Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. 1978

P M Suter, and H B Fairley, and M D Isenberg

In 12 patients requiring therapy with mechanical ventilation for acute respiratory failure, total static compliance (Cst) increased from 29 +/- 4 ml/cm H2O at a tidal volume (TV) of 5 ml/kg to 42 +/- 7 ml/cm H2O at a TV of 15 ml/kg. Similarly, Cst increased from 42 +/- 7 ml/cm H2O to 52 +/- 8 ml/cm H2O between 0 and 6 cm H2O of positive end-expiratory pressure (PEEP). At high levels of pulmonary inflation (ie, high PEEP and large TV) compliance decreased. The changes of total respiratory compliance with TV were mainly due to changes in pulmonary compliance. With PEEP, the functional residual capacity increased, and specific compliance did not change. Two mechanisms may be responsible for the changes in compliance. First, varying TV or PEEP will alter the position of tidal ventilation on the pressure-volume curve, resulting in an increase in compliance with increasing TV and PEEP up to a point, where overdistention occurs and compliance decreases. Secondly, the function of the surface-lowering substance may be altered in acute pulmonary parenchymal disease, thus disturbing the regulation of surface tension over the range of pulmonary inflation studied.

UI MeSH Term Description Entries
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008171 Lung Diseases Pathological processes involving any part of the LUNG. Pulmonary Diseases,Disease, Pulmonary,Diseases, Pulmonary,Pulmonary Disease,Disease, Lung,Diseases, Lung,Lung Disease
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D012123 Pulmonary Ventilation The total volume of gas inspired or expired per unit of time, usually measured in liters per minute. Respiratory Airflow,Ventilation Tests,Ventilation, Pulmonary,Expiratory Airflow,Airflow, Expiratory,Airflow, Respiratory,Test, Ventilation,Tests, Ventilation,Ventilation Test
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D005652 Functional Residual Capacity The volume of air remaining in the LUNGS at the end of a normal, quiet expiration. It is the sum of the RESIDUAL VOLUME and the EXPIRATORY RESERVE VOLUME. Common abbreviation is FRC. Capacities, Functional Residual,Capacity, Functional Residual,Functional Residual Capacities,Residual Capacities, Functional,Residual Capacity, Functional
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P M Suter, and H B Fairley, and M D Isenberg
September 1995, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
P M Suter, and H B Fairley, and M D Isenberg
August 1995, Journal of clinical anesthesia,
P M Suter, and H B Fairley, and M D Isenberg
November 2008, Pediatric research,
P M Suter, and H B Fairley, and M D Isenberg
May 2017, Chronic respiratory disease,
P M Suter, and H B Fairley, and M D Isenberg
June 2020, European journal of anaesthesiology,
P M Suter, and H B Fairley, and M D Isenberg
April 1986, The Journal of pediatrics,
Copied contents to your clipboard!