Nodal and paranodal structural changes in mouse and rat optic nerve during Wallerian degeneration. 1988

M Hasegawa, and J Rosenbluth, and J Ishise
Department of Physiology, New York University School of Medicine, NY 10016.

Ultrastructural changes in nodal and paranodal regions of myelinated mouse and rat optic nerve fibers were followed between 4 h and 28 days during the course of Wallerian degeneration. In the mouse, axoplasmic changes, including accumulation of organelles and segregation of microtubules, were detectable 4 h after transection, and progressed to a maximum level on day 4, at which time many axons were markedly swollen. Dense axoplasm was seen as early as 16 h and was a common feature of degenerating axoplasm at later times. Paranodal changes, which first appeared as early as 16 h after injury, included detachment of terminal loops of myelin from the axolemma, disconnection of terminal loops from compact myelin lamellae and broadening of terminal loops, or separation of the loops from each other, resulting in paranodal elongation. In freeze-fracture replicas, the E-face of the axolemma showed the normal particle distribution as late as days 3-5. By day 8, however, the nodal particles were patchy and the overall nodal particle density was reduced to approximately half normal. Some normal-looking fibers were present at all stages examined, but their number had declined to about half the total population on day 5 and to less than 10% on day 11. In the rat, the overall sequence of events and time course were comparable to those in the mouse. Thus, the morphological changes found follow approximately the same sequence as that described previously in frog nerves, but progress more rapidly in the mouse and rat.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014855 Wallerian Degeneration Degeneration of distal aspects of a nerve axon following injury to the cell body or proximal portion of the axon. The process is characterized by fragmentation of the axon and its MYELIN SHEATH. Degeneration, Wallerian

Related Publications

M Hasegawa, and J Rosenbluth, and J Ishise
October 1986, Journal of neurocytology,
M Hasegawa, and J Rosenbluth, and J Ishise
August 1987, Brain research,
M Hasegawa, and J Rosenbluth, and J Ishise
February 1985, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
M Hasegawa, and J Rosenbluth, and J Ishise
January 1990, Acta neuropathologica,
M Hasegawa, and J Rosenbluth, and J Ishise
December 1976, Journal of the neurological sciences,
M Hasegawa, and J Rosenbluth, and J Ishise
January 1985, Cell and tissue research,
M Hasegawa, and J Rosenbluth, and J Ishise
January 1973, Journal of neurochemistry,
M Hasegawa, and J Rosenbluth, and J Ishise
May 1974, Journal of neurochemistry,
M Hasegawa, and J Rosenbluth, and J Ishise
August 1965, Journal of neurochemistry,
M Hasegawa, and J Rosenbluth, and J Ishise
January 1982, Neuropatologia polska,
Copied contents to your clipboard!