Investigations of the origins of transient acetylcholinesterase activity in developing rat visual cortex. 1988

R T Robertson, and M A Hanes, and J Yu
Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine 92717.

Transient acetylcholinesterase (AChE) activity is characteristic of cortical area 17 of the developing laboratory rat during the second and third postnatal weeks of life. This AChE activity is most intense in a band that corresponds to cortical layer IV and the deep part of layer III, but also is found in the outer half of cortical layer I and in layer VI. The morphology of the pattern of the histochemical reaction product indicates that the transient AChE is characteristic of an axonal terminal field. The present report describes results of 3 sets of experiments aimed at determining the source of transient AChE in cortical area 17. First, placement of lesions in portions of the basal forebrain or in the cingulate bundle results in a decrease in the general pattern of AChE throughout occipital cortex and especially in layer I, but the transient bands of AChE in layers III-IV of cortical area 17 are not eliminated. Second, kainic acid or cobalt chloride injections in cortical area 17 result in the loss of many AChE-positive neuronal somata but do not eliminate the transient pattern of AChE in thalamo-recipient layers of cortical area 17. Similarly, treatment of fetuses with mitotic inhibitors that eliminate many of the neurons destined for granular and supragranular layers does not eliminate transient patterns of AChE. Third, lesions that include the lateral geniculate nucleus of the thalamus or geniculocortical projections result in a marked loss of the pattern of AChE in thalamo-recipient layers of cortical area 17, without significant loss in other layers of area 17 or in other regions of occipital cortex. These data support the hypothesis that the transient AChE found in thalamo-recipient layers of cortical area 17 is contained within geniculocortical axon terminals.

UI MeSH Term Description Entries
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R T Robertson, and M A Hanes, and J Yu
January 1991, Brain research. Developmental brain research,
R T Robertson, and M A Hanes, and J Yu
March 1989, Brain research. Developmental brain research,
R T Robertson, and M A Hanes, and J Yu
May 1995, Brain research. Developmental brain research,
R T Robertson, and M A Hanes, and J Yu
January 1980, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Copied contents to your clipboard!