Ontogeny of dopaminergic function in the rat midbrain tegmentum, corpus striatum and frontal cortex. 1988

E L Noisin, and W E Thomas
Division of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208.

Ontogenic development of the dopaminergic system in rat brain was investigated. This was accomplished by monitoring changes in postsynaptic dopamine receptor formation and presynaptic dopamine content in the midbrain tegmentum, frontal cortex and corpus striatum from the 18th day of gestation through adulthood. The dopamine antagonist spiperone was used as the binding ligand to quantitate receptor number while dopamine content was measured chromatographically. [3H]Spiperone binding kinetics in adult animals revealed that the maximum number of receptor sites (Bmax) was 160, 900 and 597 fmol/mg protein in midbrain tegmentum, frontal cortex and corpus striatum, respectively, while the corresponding equilibrium constant (Kd) values were 0.15, 0.52 and 0.15 nM. During the course of development, the affinity for spiperone binding in corpus striatum and frontal cortex did not change significantly, while in midbrain tegmentum the binding affinity in younger animals was significantly lower. Results from competitive inhibition experiments using various serotonergic and dopaminergic antagonists suggested that at all ages dopamine D2-receptors were responsible for spiperone binding in corpus striatum and midbrain tegmentum. In frontal cortex, binding properties consistent with D2-receptors were observed in non-adult animals; by the time adulthood was reached, however, spiperone binding characteristics were altered and appeared to correspond to serotonin sites. The developmental patterns of the dopaminergic markers were different in all 3 tissues. Adult receptor levels were achieved very early in midbrain tegmentum, while increases in receptor number continued in corpus striatum and frontal cortex, at different rates, throughout the postnatal period. A marked increase in dopamine in corpus striatum occurred during the second and third postnatal weeks and the transmitter content remained relatively constant after this time. Transient fluctuations in endogenous dopamine during the postnatal period were observed in midbrain tegmentum and frontal cortex. A general feature of the ontogenic pattern in all tissues appeared to be increases in dopamine receptor preceding increases in dopamine synthesis. A hypothesis on the developmental regulation of dopamine neurons was derived.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E L Noisin, and W E Thomas
March 1986, Experimental neurology,
E L Noisin, and W E Thomas
February 1986, Naunyn-Schmiedeberg's archives of pharmacology,
E L Noisin, and W E Thomas
January 1988, Acta physiologica Polonica,
E L Noisin, and W E Thomas
November 2001, Brain research. Molecular brain research,
E L Noisin, and W E Thomas
July 2002, Brain research. Molecular brain research,
E L Noisin, and W E Thomas
January 1965, Folia morphologica,
E L Noisin, and W E Thomas
August 1978, European journal of pharmacology,
Copied contents to your clipboard!