Intermediate filaments. 2021

Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France.

Cell morphology, architecture and dynamics primarily rely on intracellular cytoskeletal networks, which in metazoans are mainly composed of actin microfilaments, microtubules and intermediate filaments (IFs). The diameter size of 10 nm - intermediate between the diameters of actin microfilaments and microtubules - initially gave IFs their name. However, the structure, dynamics, mechanical properties and functions of IFs are not intermediate but set them apart from actin and microtubules. Because of their nucleotide-independent assembly, the lack of intrinsic polarity, their relative stability and their complex composition, IFs had long been overlooked by cell biologists. Now, the numerous human diseases identified to be associated with IF gene mutations and the accumulating evidence of IF functions in cell and tissue integrity explain the growing attention that is being given to the structural characteristics, dynamics and functions of these filaments. In this Primer, we highlight the growing evidence that has revealed a role for IFs as a key element of the cytoskeleton, providing versatile, tunable, cell-type-specific filamentous networks with unique cytoplasmic and nuclear functions.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
January 1982, Cold Spring Harbor symposia on quantitative biology,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
July 1984, The Journal of cell biology,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
June 1996, Nihon rinsho. Japanese journal of clinical medicine,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
February 1989, Current opinion in cell biology,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
December 1996, Cancer metastasis reviews,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
April 1983, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
February 2009, Experimental eye research,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
February 1990, Current opinion in cell biology,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
January 1996, Annual review of neuroscience,
Gaëlle Dutour-Provenzano, and Sandrine Etienne-Manneville
January 1985, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!