Upper airway pressure receptors alter expiratory muscle EMG and motor unit firing. 1988

E van Lunteren, and N S Cherniack, and T E Dick
Department of Medicine, University Hospitals of Cleveland, Ohio.

To examine the effects of upper airway negative pressure (UAW NP) afferents on respiratory muscle activity during expiration (TE), diaphragm electromyograms (EMG) and triangularis sterni EMG and single motor unit activity were recorded from supine anesthetized tracheotomized cats while they breathed 100% O2. The period of TE during which the diaphragm was electrically active (TE-1) and the period of TE during which the diaphragm was quiescent (TE-2) were both increased with continuous UAW NP (P less than 0.001 and P less than 0.05, respectively), as was TE-1 as a percent of TE (P less than 0.001). Continuous UAW NP reduced peak triangularis sterni EMG (P less than 0.001) and delayed its expiratory onset (P less than 0.005) but did not alter its duration of firing. Changes in triangularis sterni EMG were due to a combination of complete cessation of motor unit activity (2 of 17 motor units), a reduction in mean motor unit firing frequency (P less than 0.02), and a delay in the expiratory onset of motor unit activity (P less than 0.001). Qualitatively similar results were obtained when UAW NP was applied during inspiration only. We conclude that 1) UAW NP has reciprocal stimulatory and inhibitory influences on diaphragm and triangularis sterni muscle electrical activity, respectively, during expiration, and 2) the reductions in triangularis sterni EMG are due to both motor unit derecruitment and a slowing of motor unit firing frequency.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E van Lunteren, and N S Cherniack, and T E Dick
September 2009, European journal of applied physiology,
E van Lunteren, and N S Cherniack, and T E Dick
January 2010, Methods of information in medicine,
E van Lunteren, and N S Cherniack, and T E Dick
June 2011, Medical & biological engineering & computing,
E van Lunteren, and N S Cherniack, and T E Dick
April 2003, Journal of applied physiology (Bethesda, Md. : 1985),
E van Lunteren, and N S Cherniack, and T E Dick
July 1988, Electroencephalography and clinical neurophysiology,
E van Lunteren, and N S Cherniack, and T E Dick
October 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
E van Lunteren, and N S Cherniack, and T E Dick
November 2012, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
E van Lunteren, and N S Cherniack, and T E Dick
October 2016, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine,
E van Lunteren, and N S Cherniack, and T E Dick
September 1983, IEEE transactions on bio-medical engineering,
E van Lunteren, and N S Cherniack, and T E Dick
June 2018, Journal of neurophysiology,
Copied contents to your clipboard!