An intracellular study of time-dependent cardiovascular afferent interactions in nucleus tractus solitarius. 1988

S W Mifflin, and R B Felder
Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City 52242.

1. We used a model of bilateral carotid sinus nerve (CSN) stimulation to investigate cardiovascular afferent interactions in nucleus tractus solitarius (NTS) in anesthetized cats. In some instances, interactions with afferent inputs from vagus or renal nerves were also examined. 2. Intracellular recordings were made from 88 NTS neurons activated by electrical stimulation of one or both CSNs. Excitatory (EPSPs), inhibitory (IPSPs), and combined excitatory and inhibitory (EPSP/IPSP) postsynaptic membrane potential responses to ipsilateral CSN stimulation were observed. The input from opposite CSN (30 of 34 neurons tested) or from other ipsilateral afferent sources (vagus nerve, 10 tested; renal nerve, 9 tested) was qualitatively the same as that from ipsilateral CSN. 3. Conditioning tests demonstrated that the response (EPSP, IPSP, or EPSP/IPSP) evoked by a test stimulus to one CSN was reduced in amplitude and/or duration by a prior stimulus (1-5 pulses) to the same (82 of 85 neurons) or to the opposite (30 of 37 neurons) CSN at conditioning intervals ranging from 50 to 550 ms. For cells in which CSN stimulation evoked an EPSP, this inhibitory interaction occurred with no change in resting membrane potential and no change in input resistance. For cells in which CSN stimulation evoked an IPSP, the inhibitory interaction persisted beyond the duration of the CSN evoked IPSP. 4. We infrequently (3 cells) observed an excitatory interaction, in which the conditioning stimulus resulted in rhythmic depolarization of the neuron and a facilitated action potential response to an appropriately timed test stimulus. 5. During continuous CSN stimulation, postsynaptic potentials (PSPs) evoked by ipsilateral CSN were abolished in the steady state at stimulus frequencies of 5-20 Hz (n = 14). In cells that received a convergent input from contralateral CSN, the PSP evoked by contralateral CSN was usually (6 of 8 tested) abolished at lower stimulus frequencies (median difference = 5.0 Hz). 6. We conclude that individual NTS neurons frequently have the same PSP response to peripheral afferent inputs of different origins. Time-dependent interactions among cardiovascular afferent inputs that evoke PSPs of like kind may determine the nature of the integrated signal conveyed from NTS to subsequent cardiovascular related central nuclei. Both inhibitory and, less frequently, excitatory time-dependent interactions between cardiovascular afferent inputs occur. The absence of membrane potential changes associated with the inhibitory interaction suggests it may be mediated by disfacilitation.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S W Mifflin, and R B Felder
July 1994, Journal of neurophysiology,
S W Mifflin, and R B Felder
April 1981, Journal of the autonomic nervous system,
S W Mifflin, and R B Felder
January 1996, Progress in neurobiology,
S W Mifflin, and R B Felder
February 1993, The Journal of pharmacology and experimental therapeutics,
S W Mifflin, and R B Felder
March 1994, Journal of applied physiology (Bethesda, Md. : 1985),
S W Mifflin, and R B Felder
June 1986, Journal of the autonomic nervous system,
S W Mifflin, and R B Felder
October 1990, The American journal of physiology,
Copied contents to your clipboard!