Electrophysiologic, inotropic and antiarrhythmic effects of propafenone, 5-hydroxypropafenone and N-depropylpropafenone. 1988

G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York.

We compared the electrophysiologic, inotropic and antiarrhythmic properties of propafenone and two metabolites, 5-hydroxy (5-OH) propafenone and N-depropyl (N-DP) propafenone. In 18 canine Purkinje fibers with normal maximum diastolic potentials, all drugs (1 x 10(-8) to 1 x 10(-5) M) reduced action potential amplitude and duration. However, propafenone and 5-OH propafenone reduced Vmax in a use-dependent fashion at a lower concentration than N-DP propafenone. In 16 Purkinje fibers, slow response action potentials were induced by 22 mM K+ and isoproterenol, 1 x 10(-6) M. Vmax was comparably reduced by all compounds at 1 x 10(-5) M, but action potential amplitude was not affected by 5-OH propafenone. In 16 other Purkinje fibers in which automaticity at low levels of membrane potential was induced by BaCl2 (0.25 mM), only 5-OH propafenone was effective in slowing the automatic rate at therapeutic concentrations (3 micrograms/ml). In 15 guinea pig papillary muscles, all three drugs had negative inotropic effects at concentrations greater than or equal to 1 x 10(-6) M. In conscious dogs with sustained ventricular tachycardia 24 hr after infarction, we injected propafenone or a metabolite through an atrial cannula. At similar plasma levels, neither propafenone (n = 6) nor N-DP propafenone (n = 6) suppressed the arrhythmia, whereas 5-OH propafenone eliminated ventricular tachycardia in four of six dogs, and was more effective against monomorphic than polymorphic ventricular tachycardia. Hence, the two major metabolites of propafenone have important electrophysiologic effects, and 5-OH propafenone is more potent than the parent compound as a antiarrhythmic drug in the 24-hr Harris dog.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011405 Propafenone An antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. Apo-Propafenone,Arythmol,Baxarytmon,Cuxafenon,Fenoprain,Jutanorm,Nistaken,Norfenon,Pintoform,Prolecofen,Propafenon AL,Propafenon Hexal,Propafenon Minden,Propafenone Hydrochloride,Propafenone Hydrochloride, (R)-Isomer,Propafenone Hydrochloride, (S)-Isomer,Propafenone, (+-)-Isomer,Propafenone, (R)-Isomer,Propafenone, (S)-Isomer,Propamerck,Rythmol,Rytmo-Puren,Rytmogenat,Rytmonorm,SA-79,Hydrochloride, Propafenone,SA 79,SA79
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
January 1988, Journal of chromatography,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
January 1991, Developmental pharmacology and therapeutics,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
November 1984, The American journal of cardiology,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
October 1989, Journal of cardiovascular pharmacology,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
July 1999, Journal of cardiovascular pharmacology and therapeutics,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
March 2003, Cardiovascular research,
G Malfatto, and A Zaza, and M Forster, and B Sodowick, and P Danilo, and M R Rosen
January 1984, Arzneimittel-Forschung,
Copied contents to your clipboard!