Structural Analysis of Glycosylglycerolipids Using NMR Spectroscopy. 2021

Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.

Glycosylglycerolipids are essential components of plant and bacterial membranes. These lipids exert central roles in physiological processes such as photosynthesis in plants or to maintain membrane stability in bacteria. They are composed of a glycerol backbone esterified with two fatty acids at the sn-1 and sn-2 positions, and carbohydrate moieties connected via a glycosidic bond at the sn-3 position. Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technique to determine the nature of the bound carbohydrates as well as their anomeric configurations. Here we describe the analysis of intact glycosylglycerolipids by NMR spectroscopy to determine structural details of their sugar head groups without the need of chemical derivatization.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside

Related Publications

Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
November 2007, Journal of peptide science : an official publication of the European Peptide Society,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
February 2006, Nature methods,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
September 2011, AAPS PharmSciTech,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
March 1994, Nihon rinsho. Japanese journal of clinical medicine,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
June 1991, Biochemistry international,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
January 1999, Biopolymers,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
September 1973, Biochimica et biophysica acta,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
December 2009, Proteomics,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
August 2008, Expert review of proteomics,
Wiebke Knaack, and Georg Hölzl, and Nicolas Gisch
January 2003, Annual review of physical chemistry,
Copied contents to your clipboard!