Culture, Expansion and Differentiation of Mouse Bone-Derived Mesenchymal Stromal Cells. 2021

Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, Paris, France.

Mesenchymal stem/stromal cells (MSCs) are multipotent adult cells that are present in several tissues including the bone marrow (BM), in which they can differentiate in a variety of cell types such as osteoblasts, chondrocytes and adipocytes. The isolation of MSCs has been carried out by many studies that aim to control their differentiation into cartilaginous and bone cells in vitro in order to use this technology in the repair of damaged tissues. Here we describe the minimum requirements and an efficient method for isolation, expansion of mouse bone-derived multipotent mesenchymal stromal cells and their differentiation into osteoblasts, responsible for the bone matrix synthesis and mineralization.

UI MeSH Term Description Entries
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells

Related Publications

Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
January 2021, Methods in molecular biology (Clifton, N.J.),
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
January 2021, Methods in molecular biology (Clifton, N.J.),
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
February 2020, Bio-protocol,
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
July 2017, Cytotherapy,
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
January 2011, Methods in molecular biology (Clifton, N.J.),
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
March 2002, Molecular biotechnology,
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
April 2011, Stem cells and development,
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
November 2013, Cytotherapy,
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
January 2023, Methods in molecular biology (Clifton, N.J.),
Zeina Abou Nader, and Marion Espéli, and Karl Balabanian, and Julia P Lemos
April 2012, Cytotherapy,
Copied contents to your clipboard!