G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle. 1988

A Katz
Clinical Diabetes and Nutrition Section, National Institutes of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona 85016.

The effect of circulatory occlusion on the content of glucose 1,6-bisphosphate (G-1,6-P2), glycogenolytic intermediates, and high-energy phosphates in the quadriceps femoris muscles of eight men was investigated. Needle biopsies were obtained at rest, after 30 min of circulatory occlusion, and 15 min after the occlusion was released. G-1,6-P2 averaged 75 +/- 8 (SE) mumol/kg dry wt at rest and did not change significantly after occlusion (82 +/- 10; P greater than 0.05) but was slightly elevated after 15 min recovery (88 +/- 12; P less than 0.05 vs. rest). Phosphocreatine (PCr) decreased in all subjects after occlusion (from 80.4 +/- 2.6 to 66.2 +/- 4.7 mmol/kg dry wt; P less than 0.001) and was completely resynthesized after recovery (80.9 +/- 2.4). Fructose 1,6-bisphosphate (F-1,6-P2) was doubled after occlusion (P less than 0.05). During occlusion, the average glycolytic and anaerobic ATP turnover rates were 0.08 +/- 0.02 mmol.kg dry wt-1.min-1 (approximately 4 times the calculated rate at rest) and 0.7 +/- 0.2 mmol.kg dry wt-1.min-1 (less than 20% of the calculated rate at rest), respectively. Total glycolysis was strongly related to the calculated increase in inorganic phosphate (Pi, r = 0.93; P less than 0.01), the decrease in PCr/Cr (reflects an increase in free ADP and AMP) (r = 0.92; P less than 0.01), and the increase in hexosemonophosphates (r = 0.77; P less than 0.05). It is concluded that short-term ischemia in human skeletal muscle results in no change in the content of G-1,6-P2.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D003401 Creatine An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005958 Glucosephosphates
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006600 Hexosephosphates

Related Publications

A Katz
January 1988, Comparative biochemistry and physiology. B, Comparative biochemistry,
A Katz
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
A Katz
January 1997, European journal of applied physiology and occupational physiology,
A Katz
September 2020, Nature metabolism,
A Katz
May 2013, Neural regeneration research,
A Katz
December 1999, Journal of applied physiology (Bethesda, Md. : 1985),
A Katz
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!