Nonrandom turnover of actin and tubulin in cultured rabbit cardiac fibroblasts. 1988

W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611.

Total protein fractional rates of growth, synthesis, and degradation were assessed in primary cultures of rabbit cardiac fibroblasts. Differences in fractional growth rates were produced by subculturing cells at low density and growing them to confluence. Total protein fractional degradative rates were then derived by subtracting fractional growth rates from measured fractional synthetic rates (obtained in [3H]leucine pulse-labeling experiments). Actin and tubulin degradation were studied in similar rapidly and slowly growing cultures. [35S]methionine pulse-chase experiments, followed by dodecyl sulfate-polyacrylamide gel electrophoresis, fluorography, and densitometry were used to determine the amount of labeled actin and tubulin remaining in cultures at various times during the chase (0-96 h). The indirect study showed a substantially lower total protein fractional degradative rate during rapid vs. slow growth (0.04 +/- 0.13 vs. 0.42 +/- 0.01 d-1 at 2 and 15 days after subculture, respectively; P less than 0.01). At both growth rates, the disappearance of labeled actin and tubulin was delayed, suggesting a more complex model for their degradation than random decay. Serum deprivation of slowly growing fibroblasts increased the rate of disappearance of both proteins by eliminating the delay in their breakdown. Thus the suppression of protein degradation during rapid growth appears to result from the presence of relatively greater amounts of "new" actin and tubulin (and possible other long-lived proteins) that are kinetically distinct from the total intracellular pools of these proteins with respect to their susceptibility to proteolysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
July 1993, The American journal of physiology,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
May 1980, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
February 1990, Nature,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
September 1982, Biochemical and biophysical research communications,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
April 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
January 1980, Journal of cyclic nucleotide research,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
February 1986, Proceedings of the Royal Society of London. Series B, Biological sciences,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
May 1995, Clinical science (London, England : 1979),
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
September 1979, The Journal of biological chemistry,
W R Mostow, and A G Ferguson, and M Lesch, and R S Decker, and A M Samarel
February 1978, Journal of cellular physiology,
Copied contents to your clipboard!