Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae. 1977

L Sánchez, and D Vásquez, and A Jiménez

Protein synthesis by ribosomes from several cryptopleurine-resistant yeast mutants is also resistant to emetine and tubulosine. These mutants can be classified into two different types: Class I mutants which display high levels of resistance to emetine and tubulosine and Class II mutants that are only weakly resistant to tubulosine and are slightly more sensitive to emetine than those of Class I. Apparently all mutants have similar levels of resistance to cryptopleurine. The distinct phenotypes of Class I and Class II strains are expressed through their 40S ribosomal subunit. Genetic analysis has shown that the mutations to cryptopleuring resistance are allelic and that in a particular case (strain CRY6) the pleiotropic phenotype is a result of the expression of the cry1 locus. It is suggested that Class I and Class II mutants arise from two independent mutational events within The cry1 allel. In heterozygous (+/cry1) diploids both the sensitive and the resistant genes are expressed as shown by studies of the action of cryptopleurine on polyphenylalanine-synthesizing systems derived from each parental sensitive and resistant haploid strain and heterozygous diploid strains. The apparent dominance of sensitivity over resistance which may be observed in vivo in heterozygous (+/cry1) diploids has been explained in terms of the mode of action of the inhibitors.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011807 Quinolizines
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004640 Emetine The principal alkaloid of ipecac, from the ground roots of Uragoga (or Cephaelis) ipecacuanha or U. acuminata, of the Rubiaceae. It is used as an amebicide in many different preparations and may cause serious cardiac, hepatic, or renal damage and violent diarrhea and vomiting. Emetine inhibits protein synthesis in EUKARYOTIC CELLS but not PROKARYOTIC CELLS. Ipecine,Methylcephaeline,Emetine Dihydrochloride,Emetine Hydrochloride,Dihydrochloride, Emetine,Hydrochloride, Emetine
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

L Sánchez, and D Vásquez, and A Jiménez
March 1977, Journal of bacteriology,
L Sánchez, and D Vásquez, and A Jiménez
July 1980, Current genetics,
L Sánchez, and D Vásquez, and A Jiménez
December 1974, Journal of bacteriology,
L Sánchez, and D Vásquez, and A Jiménez
December 1982, Federation proceedings,
L Sánchez, and D Vásquez, and A Jiménez
January 1993, Genetica,
L Sánchez, and D Vásquez, and A Jiménez
December 2016, Biochemistry. Biokhimiia,
L Sánchez, and D Vásquez, and A Jiménez
August 1994, Biochimica et biophysica acta,
L Sánchez, and D Vásquez, and A Jiménez
April 2003, FEMS microbiology reviews,
L Sánchez, and D Vásquez, and A Jiménez
January 2005, Microbiology (Reading, England),
Copied contents to your clipboard!