Heat-shock response is associated with enhanced postischemic ventricular recovery. 1988

R W Currie, and M Karmazyn, and M Kloc, and K Mailer
Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada.

In cells, hyperthermia induces synthesis of heat-shock proteins and the acquisition of thermotolerance. Thermotolerant cells are resistant to subsequent oxidative stress. In this study, heat-shocked hearts were examined for evidence of protection during ischemia and reperfusion. Rats were exposed to 15 minutes of 42 degrees C hyperthermia. Twenty-four hours later their hearts were isolated and perfused and the contractility examined during and after ischemic perfusion. No protection was observed during ischemic perfusion. However, upon reperfusion heat-shocked hearts had recovery of contractility within 5 minutes of reperfusion, while control hearts showed no contractility at this time. Throughout 30 minutes of reperfusion heat-shocked hearts had significantly improved recovery of contractile force, rate of contraction and rate of relaxation. Creatine kinase release, associated with reperfusion injury, was significantly reduced from a high of 386.8 +/- 78.9 mU/min/g heart wt for controls to 123.7 +/- 82.9 mU/min/g heart wt for heat-shocked hearts at 5 minutes of reperfusion. Following 30 minutes of reperfusion, ultrastructural examination revealed less damage of mitochondrial membranes in the heat-shocked hearts. Further biochemical investigations revealed that the antioxidative enzyme, catalase, was significantly increased to 137 +/- 12.7 U/mg protein in the heat-shocked hearts while the control value was 64.8 +/- 8.3 U/mg protein. Hyperthermic treatment, which induces the heat-shock response, may be therapeutic for salvaging ischemic myocardium during reperfusion, through a mechanism involving increased levels of myocardial catalase.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

R W Currie, and M Karmazyn, and M Kloc, and K Mailer
August 1994, Molecular and cellular biochemistry,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
November 1995, Circulation,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
April 2004, Naunyn-Schmiedeberg's archives of pharmacology,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
April 1995, The Journal of thoracic and cardiovascular surgery,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
May 1989, Journal of bacteriology,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
November 2000, Digestive diseases and sciences,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
March 1995, Molecular and cellular biochemistry,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
March 2012, Trends in pharmacological sciences,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
June 2001, The European respiratory journal,
R W Currie, and M Karmazyn, and M Kloc, and K Mailer
June 2003, Circulation,
Copied contents to your clipboard!