Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. 1988

M Courtois, and S J Kovács, and P A Ludbrook
Washington University School of Medicine, Cardiovascular Division, St. Louis, MO 63110.

Effects of regional diastolic pressure differences within the left ventricle on the measured transmitral pressure-flow relation were determined by simultaneous micromanometric left atrial (LAP) and left ventricular pressure (LVP) measurements, and Doppler echocardiograms in 11 anesthetized, closed-chest dogs. Intraventricular pressure recordings at sites that were 2, 4, and 6 cm from the apex were obtained. Profound differences between these sites were noted in the transmitral pressure relation during early (preatrial) diastolic filling. In measurements from apex to base, minimum LVP increased (1.6 +/- 0.7 to 3.1 +/- 0.8 mm Hg, mean +/- SD); the time interval between the first crossover of transmitral pressures and minimum LVP increased (31 +/- 3 to 50 +/- 17 msec); the slope of the rapid-filling LVP wave decreased (74 +/- 13 to 26 +/- 5 mm Hg/sec); the maximum forward (i.e., LAP greater than LVP) transmitral pressure gradient decreased (3.6 +/- 1.3 to 2.1 +/- 0.7 mm Hg); the time interval between the first and second points of transmitral pressure crossover increased (71 +/- 9 to 96 +/- 13 msec); and the area of reversed (i.e., LVP greater than LAP) gradient between the second and third points of transmitral pressure crossover decreased (101 +/- 41 to 40 +/- 33 mm Hg.msec). During atrial contraction, significant regional ventricular apex-to-base gradients were also noted. The slope of the LV A wave decreased (26 +/- 10 to 16 +/- 4 mm Hg/sec); LV end-diastolic pressure decreased (8.1 +/- 2.0 to 7.4 +/- 2.0 mm Hg), and the upstroke of the LV A wave near the base was recorded earlier than near the apex. All differences were significant at the 0.05 level. Simultaneous transmitral Doppler velocity profiles and transmitral pressures were measured at the 4-cm intraventricular site. The average interval between the first and second points of pressure crossover and between the onset of early rapid filling and maximum E-wave velocity were statistically similar (81 +/- 13 vs. 85 +/- 12 msec; NS); and the average area of the forward transmitral pressure gradient associated with acceleration of early flow was significantly greater than the area of reversed gradient associated with deceleration of early flow (133 +/- 36 vs. 80 +/- 46 msec.mm Hg; p less than 0.025).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008365 Manometry Measurement of the pressure or tension of liquids or gases with a manometer. Tonometry,Manometries
D008943 Mitral Valve The valve between the left atrium and left ventricle of the heart. Bicuspid Valve,Bicuspid Valves,Mitral Valves,Valve, Bicuspid,Valve, Mitral,Valves, Bicuspid,Valves, Mitral
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004452 Echocardiography Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic. Echocardiography, Contrast,Echocardiography, Cross-Sectional,Echocardiography, M-Mode,Echocardiography, Transthoracic,Echocardiography, Two-Dimensional,Transthoracic Echocardiography,2-D Echocardiography,2D Echocardiography,Contrast Echocardiography,Cross-Sectional Echocardiography,Echocardiography, 2-D,Echocardiography, 2D,M-Mode Echocardiography,Two-Dimensional Echocardiography,2 D Echocardiography,Cross Sectional Echocardiography,Echocardiography, 2 D,Echocardiography, Cross Sectional,Echocardiography, M Mode,Echocardiography, Two Dimensional,M Mode Echocardiography,Two Dimensional Echocardiography
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

M Courtois, and S J Kovács, and P A Ludbrook
February 1995, The American journal of physiology,
M Courtois, and S J Kovács, and P A Ludbrook
January 1976, The Journal of surgical research,
M Courtois, and S J Kovács, and P A Ludbrook
January 1988, Catheterization and cardiovascular diagnosis,
M Courtois, and S J Kovács, and P A Ludbrook
December 1988, Circulation,
M Courtois, and S J Kovács, and P A Ludbrook
December 2000, Journal of biomechanical engineering,
M Courtois, and S J Kovács, and P A Ludbrook
January 1983, The Japanese journal of physiology,
M Courtois, and S J Kovács, and P A Ludbrook
June 1983, Journal of cardiography,
Copied contents to your clipboard!