DGAT1 Expression Promotes Ovarian Cancer Progression and Is Associated with Poor Prognosis. 2021

Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
Department of Obstetrics and Gynecology, Changhai Hospital, Navy Medical University, Shanghai, China.

BACKGROUND Ovarian cancer is the most fatal gynecological malignancy. Owing to its insidious onset, rapid development, and poor prognosis, ovarian cancer is the fifth most common cause of death in women. Although immunotherapy-related drugs, such as Olaparib, can alleviate ovarian cancer progression, there are no remarkable breakthroughs for its effective treatment. It is considered that the transformation of normal cells to cancerous ones involves "recoding" of certain metabolic pathways. Diacylglycerol O-acyltransferase 1 (DGAT1) can synthesize triglycerides by transferring acyl-CoA to diacylglycerol, which plays a key role in lipid synthesis. However, the role of DGAT1 in ovarian cancer is not yet elucidated. METHODS We analyzed the correlation between DGAT1 and ovarian cancer staging, grading, vascular invasion, and prognosis by collating the information of ovarian cancer specimens from The Cancer Genome Atlas (TCGA) database. Furthermore, the effects of DGAT1 expression on proliferation, migration, invasion, and tumor growth were studied using ovarian cancer cell lines. GSEA was used to analyze the KEGG pathways and biological function enriched because of DGAT1 expression in ovarian cancer. RESULTS The expression of DGAT1 was elevated in advanced (p = 0.0432), poorly differentiated (p = 0.0148), and vascular invaded (p = 0.0002) ovarian cancer specimens. Prognosis among patients with high expression of DGAT1 was poor. After DGAT1 expression was interfered, proliferation, migration, invasion, colony forming, and tumor growth of ovarian cancer cells were inhibited. In addition, GSEA showed that DGAT1 may be involved in the immune process. CONCLUSIONS DGAT1 expression is associated with the clinical phenotype of ovarian cancer. We suggest that DGAT1 has potential implications in the treatment of ovarian cancer.

UI MeSH Term Description Entries
D009367 Neoplasm Staging Methods which attempt to express in replicable terms the extent of the neoplasm in the patient. Cancer Staging,Staging, Neoplasm,Tumor Staging,TNM Classification,TNM Staging,TNM Staging System,Classification, TNM,Classifications, TNM,Staging System, TNM,Staging Systems, TNM,Staging, Cancer,Staging, TNM,Staging, Tumor,System, TNM Staging,Systems, TNM Staging,TNM Classifications,TNM Staging Systems
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051048 Diacylglycerol O-Acyltransferase An enzyme that catalyses the last step of the TRIACYLGLYCEROL synthesis reaction in which diacylglycerol is covalently joined to LONG-CHAIN ACYL COA to form triglyceride. It was formerly categorized as EC 2.3.1.124. Acyl-Coenzyme A Diacyl-glycerol Acyltransferase,DAGAT Enzyme,Diacylglycerol Acyltransferase,Diacylglycerol O-Acyltransferase 1,Diglyceride Acyltransferase,Diglyceride Acyltransferase 1,Palmitoyl-CoA-sn-1,2-Diacylglycerol Acyltransferase,Palmitoyl-Coenzyme A-sn-1,2-Diacylglycerol Acyltransferase,A-sn-1,2-Diacylglycerol Acyltransferase, Palmitoyl-Coenzyme,Acyl Coenzyme A Diacyl glycerol Acyltransferase,Acyltransferase 1, Diglyceride,Acyltransferase, Diacylglycerol,Acyltransferase, Diglyceride,Acyltransferase, Palmitoyl-CoA-sn-1,2-Diacylglycerol,Acyltransferase, Palmitoyl-Coenzyme A-sn-1,2-Diacylglycerol,Diacylglycerol O Acyltransferase,Diacylglycerol O Acyltransferase 1,O-Acyltransferase 1, Diacylglycerol,O-Acyltransferase, Diacylglycerol,Palmitoyl CoA sn 1,2 Diacylglycerol Acyltransferase,Palmitoyl Coenzyme A sn 1,2 Diacylglycerol Acyltransferase

Related Publications

Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
June 2015, Gynecologic oncology,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
January 2022, Frontiers in oncology,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
January 2018, OncoTargets and therapy,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
June 2021, Journal of personalized medicine,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
May 2019, Journal of cancer research and clinical oncology,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
January 2021, Frontiers in oncology,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
January 2020, OncoTargets and therapy,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
November 2023, Journal of cellular and molecular medicine,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
January 2019, Cancer biology & therapy,
Leilei Xia, and Ye Wang, and Shengyun Cai, and Mingjuan Xu
November 2015, Oncotarget,
Copied contents to your clipboard!