Chromosomal aberrations induced by in vitro irradiation: comparisons between human sperm and lymphocytes. 1988

B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
Lawrence Livermore National Laboratory, University of California, Livermore 94550.

Types and frequencies of structural aberrations in human sperm and lymphocyte chromosomes from one donor were compared after in vitro irradiation with 100, 200, and 400 rad in order to determine if cells with dramatically different chromatin configurations are similarly affected and to investigate the feasibility of using lymphocytes as surrogates for germ cells in risk estimation. Sperm chromosomes were analyzed after fusion with eggs from the golden hamster. Total frequencies of induced aberrations were similar in the two cell types. However, the relative frequencies of rejoined lesions (dicentrics), compared with unrejoined lesions (chromosome breaks and acentric fragments), were different. At the three doses tested, a constant ratio of 5 dicentrics in lymphocytes for every dicentric in sperm was induced. Conversely, for every chromosome break or acentric fragment induced in lymphocytes, 1.7 such events were induced in sperm at the three doses tested.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
October 1997, International journal of radiation biology,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
December 1983, Mutation research,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
April 2000, Mutation research,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
September 1996, Bulletin of environmental contamination and toxicology,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
May 1989, Mutation research,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
April 1977, Radiation research,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
August 1990, International journal of radiation biology,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
February 1976, International journal of radiation biology and related studies in physics, chemistry, and medicine,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
February 1994, Mutation research,
B F Brandriff, and L A Gordon, and L K Ashworth, and A V Carrano
January 1993, Postepy higieny i medycyny doswiadczalnej,
Copied contents to your clipboard!