Cannabinoid receptors distribution in mouse cortical plasma membrane compartments. 2021

Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
Department of Anatomy, Physiology, Pharmacology; College of Medicine, University of Saskatchewan, 105 Wiggins Road, Health Sciences Bldg. Room GD30.5, Saskatoon, SK, S7N 5E5, Canada.

The type 1 and type 2 cannabinoid receptors (CB1 and CB2 receptors) are class A G protein-coupled receptors (GPCRs) that are activated by endogenous lipids called endocannabinoids to modulate neuronal excitability and synaptic transmission in neurons throughout the central nervous system (CNS), and inflammatory processes throughout the body. CB1 receptor is one of the most abundant GPCRs in the CNS and is involved in many physiological and pathophysiological processes, including mood, appetite, and nociception. CB2 receptor is primarily found on immunomodulatory cells of both the CNS and the peripheral immune system. In this study, we isolated lipid raft and non-lipid raft fractions of plasma membrane (PM) from mouse cortical tissue by using cold non-ionic detergent and sucrose gradient centrifugation to study the localization of CB1 receptor and CB2 receptor. Lipid raft and non-lipid raft fractions were confirmed by flotillin-1, caveolin-1 and transferrin receptor as their protein biomarkers. Both CB1 receptor and CB2 receptor were found in non-raft compartments that is inconsistent with previous findings in cultured cell lines. This study demonstrates compartmentalization of both CB1 receptor and CB2 receptor in cortical tissue and warrants further investigation of CB1 receptor and CB2 receptor compartmental distribution in various brain regions and cell types.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D043882 Receptors, Cannabinoid A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES. Cannabinoid Receptor,Cannabinoid Receptors,Receptor, Cannabinoid
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D021962 Membrane Microdomains Detergent-insoluble CELL MEMBRANE components. They are enriched in SPHINGOLIPIDS and CHOLESTEROL and clustered with glycosyl-phosphatidylinositol (GPI)-anchored proteins. Lipid Rafts, Cell Membrane,Sphingolipid Microdomains,Sphingolipid-Cholesterol Rafts,Membrane Microdomain,Microdomain, Membrane,Microdomain, Sphingolipid,Microdomains, Membrane,Microdomains, Sphingolipid,Sphingolipid Cholesterol Rafts,Sphingolipid Microdomain,Sphingolipid-Cholesterol Raft

Related Publications

Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
May 1998, Brain research,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
October 1998, Human reproduction (Oxford, England),
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
January 2003, European journal of pharmacology,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
December 2009, Journal of neuroscience research,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
June 1992, The Journal of biological chemistry,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
May 1987, The Journal of investigative dermatology,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
October 1983, The Journal of clinical investigation,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
October 2013, Pancreas,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
December 1979, Proceedings of the National Academy of Sciences of the United States of America,
Hajar Miranzadeh Mahabadi, and Haseeb Bhatti, and Robert B Laprairie, and Changiz Taghibiglou
November 1987, The American journal of physiology,
Copied contents to your clipboard!