Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cε/Nrf2/HO-1 signaling pathway. 2021

Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China.

Isorhapontigenin (ISO) has been shown to have antioxidant activity. This study aimed to investigate the antioxidant effects of ISO on cerebral ischemia/reperfusion (I/R) injury and its possible molecular mechanisms. Focal cerebral ischemia-reperfusion injury (MCAO/R) model and primary cortical neurons were established an oxygen-glucose deprivation (OGD / R) injury model. After 24 hr of reperfusion, the neurological deficits of the rats were analyzed and HE staining was performed, and the infarct volume was calculated by TTC staining. In addition, the reactive oxygen species (ROS) in rat brain tissue, the content of 4-Hydroxynonenal (4-HNE), and 8-hydroxy2deoxyguanosine (8-OHdG) were detected. Neuronal cell viability was determined by MTT assay. Western blot analysis was determined for protein expression. ISO treatment significantly improved neurological scores, reduced infarct volume, necrotic neurons, ROS production, 4-HNE, and 8-OHdG levels. At the same time, ISO significantly increased the expression of Nrf2 and HO-1. The neuroprotective effects of ISO can be eliminated by knocking down Nrf2 and HO-1. In addition, knockdown of the PKCε blocked ISO-induced nuclear Nfr2, HO-1 expression. ISO protected against oxidative damage induced by brain I/R, and its neuroprotective mechanism may be related to the PKCε/Nrf2/HO-1 pathway.

UI MeSH Term Description Entries
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051267 NF-E2-Related Factor 2 A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage. Nfe2l2 Protein,Nuclear Factor (Erythroid-Derived 2)-Like 2 Protein,Nuclear Factor E2-Related Factor 2,NF E2 Related Factor 2,Nuclear Factor E2 Related Factor 2
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective

Related Publications

Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
March 2017, Molecular neurobiology,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
March 2024, Environmental toxicology,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
March 2024, Molecular neurobiology,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
April 2023, Molecules (Basel, Switzerland),
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
January 2015, International journal of clinical and experimental medicine,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
January 2022, Drug design, development and therapy,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
January 2023, Cardiovascular therapeutics,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
June 2021, Biochemical and biophysical research communications,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
November 2023, International immunopharmacology,
Zhe Xue, and Kai Zhao, and Zhenghui Sun, and Chen Wu, and Bowen Yu, and Dongsheng Kong, and Bainan Xu
October 2021, Respiratory physiology & neurobiology,
Copied contents to your clipboard!