Changes in plasma activities of lipolytic enzymes and lipids of normolipidemic subjects given phenobarbital, a strong microsomal inducer, alone or in combination with fenofibrate. 1988

F R Heller, and J P Desager, and C Harvengt
Laboratory of Pharmacotherapy, Catholic University of Louvain, Brussels, Belgium.

Eight male, normolipidemic, non-obese subjects were given fenofibrate (F) (300 mg daily) for eight days (period F). After a wash-out period of four weeks, phenobarbital (P) (100 mg daily) was given for eight days (period P). At the end of this period, P was continued at the same dosage but F (300 mg daily) was added and both drugs were given simultaneously for a further eight-day period (period P + F). The plasma concentrations of lipids and the plasma activities of enzymes involved in the interconversion of plasma lipoproteins: lipoprotein lipase (LPL), hepatic lipase (HL) and lecithin: cholesterol acyltransferase (LCAT) were measured before and at the end of each period of treatment. Fenofibrate induced a decrease in the plasma concentration of triglycerides (TG), total cholesterol (TC), apoB and an increase in the plasma activities of LPL and LCAT. Phenobarbital induced a decrease in the plasma concentration of TC, HDL-C and LDL-C (with an unchanged HDL-C/LDL-C ratio) and in the plasma activity of LPL. Addition of P to F did not modify the hypolipidemic action of F but the increase of LPL activity during period P + F was found to be greater than that observed during period F. It is concluded that P does not modify the serum lipoprotein pattern in a way which can be considered as beneficial in terms of atherosclerosis. By measuring the serum concentration of unconjugated bilirubin, the plasma clearance of antipyrine and the urinary excretion of 6 beta-hydroxycortisol as parameters of hepatic microsomal induction, F appeared to be a slight inducer as compared with P. Thus, enzyme induction cannot explain the changes in serum lipoproteins induced by P and does not modify the hypolipidemic action of F.

UI MeSH Term Description Entries
D007862 Phosphatidylcholine-Sterol O-Acyltransferase An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. Lecithin Cholesterol Acyltransferase,Cholesterol Ester Lysolecithin Acyltransferase,Lecithin Acyltransferase,Phosophatidylcholine-Sterol Acyltransferase,Acyltransferase, Lecithin,Acyltransferase, Lecithin Cholesterol,Acyltransferase, Phosophatidylcholine-Sterol,Cholesterol Acyltransferase, Lecithin,O-Acyltransferase, Phosphatidylcholine-Sterol,Phosophatidylcholine Sterol Acyltransferase,Phosphatidylcholine Sterol O Acyltransferase
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011345 Fenofibrate An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. Procetofen,Antara Micronized Procetofen,Apo-Feno-Micro,Apo-Fenofibrate,CiL,Controlip,Fenobeta,Fenofanton,Fenofibrat AL,Fenofibrat AZU,Fenofibrat AbZ,Fenofibrat FPh,Fenofibrat Heumann,Fenofibrat Hexal,Fenofibrat Stada,Fenofibrat-ratiopharm,Fénofibrate Debat,Fénofibrate MSD,Gen-Fenofibrate,LF-178,Lipanthyl,Lipantil,Liparison,Lipidil,Lipidil-Ter,Livesan,Lofibra,MTW-Fenofibrat,Normalip,Novo-Fenofibrate,Nu-Fenofibrate,PMS-Fenofibrate Micro,Phenofibrate,Procetofene,Secalip,Supralip,Tricor,durafenat,fenofibrat von ct,AZU, Fenofibrat,Apo Feno Micro,Apo Fenofibrate,Debat, Fénofibrate,Fenofibrat ratiopharm,Gen Fenofibrate,Heumann, Fenofibrat,Hexal, Fenofibrat,LF 178,LF178,Lipidil Ter,MTW Fenofibrat,Micronized Procetofen, Antara,Novo Fenofibrate,Nu Fenofibrate,PMS Fenofibrate Micro,Procetofen, Antara Micronized,Stada, Fenofibrat
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid

Related Publications

F R Heller, and J P Desager, and C Harvengt
September 1993, Clinica chimica acta; international journal of clinical chemistry,
F R Heller, and J P Desager, and C Harvengt
May 1986, Metabolism: clinical and experimental,
F R Heller, and J P Desager, and C Harvengt
January 1983, European journal of clinical pharmacology,
F R Heller, and J P Desager, and C Harvengt
March 1973, Bulletin of environmental contamination and toxicology,
F R Heller, and J P Desager, and C Harvengt
January 1969, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
F R Heller, and J P Desager, and C Harvengt
January 1988, Cancer chemotherapy and pharmacology,
F R Heller, and J P Desager, and C Harvengt
March 1968, The Journal of endocrinology,
Copied contents to your clipboard!