Somatotopic organization of the dorsal horn in the lumbosacral enlargement of the spinal cord in the neonatal cat. 1988

P Wilson, and P J Snow
Department of Anatomy, University of Queensland, St. Lucia, Australia.

The somatotopic organization of the light touch receptive fields of single unidentified dorsal horn neurons in the lumbosacral spinal cord has been studied in the neonatal cat anesthetized with chloralose. Satisfactory recordings were obtained from single dorsal horn neurons in kittens aged 3-6 days. Reconstruction of recording tracks from pontamine blue dye spots and comparisons of the depths of recording sites with Nissl-stained sections of cord showed that most single-unit recordings were obtained from laminae III and IV of Rexed. In animals of all ages neurons were found which responded briskly to light cutaneous mechanical stimulation. Their receptive fields varied widely in size, being smallest on the distal digits and largest on proximal skin. Receptive field areas were similar in proportion to the size of the hindlimb to those seen in the equivalent region in the adult cat. Because of the shape of the dorsal horn and the relatively narrow dorsal columns in neonatal kittens it proved difficult to locate units with receptive fields on proximal skin. Nevertheless the main features of the somatotopic organization of the dorsal horn were similar to those in the adult cat. Thus the somatotopic map of the kitten showed a medial representation of glabrous skin that was bounded laterally by the representation of the hairy skin of the toes. Proximal skin was represented in the lateral parts of the dorsal horn, a region which was not easily accessible for microelectrode recording. The individual toes were represented in a rostral to caudal sequence such that toe 2 was represented rostrally and toe 5 caudally. Around the toe representation the medial surface of the foot was represented rostrally, the ventrolateral surface caudally, and the dorsal surface laterally. The results indicate that the mature organization of light touch receptive fields of dorsal horn neurons in the lumbosacral cord of the cat is already largely present at birth.

UI MeSH Term Description Entries
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.

Related Publications

P Wilson, and P J Snow
January 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Wilson, and P J Snow
September 1980, Experimental neurology,
P Wilson, and P J Snow
January 1981, Journal of neurophysiology,
P Wilson, and P J Snow
August 1982, Journal of neurophysiology,
P Wilson, and P J Snow
January 1975, Journal of neurophysiology,
P Wilson, and P J Snow
January 1983, Acta morphologica Hungarica,
Copied contents to your clipboard!