Assessment of microvascular function and pharmacological regulation in genetically confirmed familial hypercholesterolemia. 2021

Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
Department of Cardiac Diagnostics, Medical University of Gdansk, Poland.

Familial hypercholesterolemia (FH) is a genetic lipid disorder leading to accelerated atherosclerosis, premature cardiovascular disease and death. Microvascular endothelial dysfunction is one of the earliest vascular pathology manifestations and may precede symptomatic atherosclerosis. In this paper, microvascular endothelial function was assessed in FH patients and healthy controls using flow mediated skin fluorescence (FMSF), based on measurements of nicotinamide adenine dinucleotide fluorescence intensity during brachial artery occlusion (ischemic response, IR) and immediately after occlusion (hyperemic response, HR). Low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) were used to assess its relation with microvascular parameters evaluated in vivo. LDL-C levels were significantly correlated to both HRmax (r = -0.548, p = 0.001) and HRindex (r = -0.514, p = 0.003). Similarly, there was a significant inverse correlation of TC levels and both HRmax (r = -0.538, p = 0.002) and HRindex (r = -0.512, p = 0.003). All FMSF parameters were found lower in FH patients compared to age- and sex-matched healthy controls. Hyperemic response (HRmax) was significantly higher in FH patients examined on statins compared to those without any lipid-lowering treatment (19.9 ± 3.1 vs. 16.4 ± 4.2 respectively, p = 0.022). This study shows that, in patients with FH, microvascular endothelial-dependent hyperemic response is impaired and inversely correlated to plasma cholesterol levels. Microvascular function was found better in FH patients receiving statins.

UI MeSH Term Description Entries
D008078 Cholesterol, LDL Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol. LDL Cholesterol,Cholesteryl Linoleate, LDL,LDL Cholesteryl Linoleate,Low Density Lipoprotein Cholesterol,beta-Lipoprotein Cholesterol,Cholesterol, beta-Lipoprotein,beta Lipoprotein Cholesterol
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic
D006940 Hyperemia The presence of an increased amount of blood in a body part or an organ leading to congestion or engorgement of blood vessels. Hyperemia can be due to increase of blood flow into the area (active or arterial), or due to obstruction of outflow of blood from the area (passive or venous). Active Hyperemia,Arterial Hyperemia,Passive Hyperemia,Reactive Hyperemia,Venous Congestion,Venous Engorgement,Congestion, Venous,Engorgement, Venous,Hyperemia, Active,Hyperemia, Arterial,Hyperemia, Passive,Hyperemia, Reactive,Hyperemias,Hyperemias, Reactive,Reactive Hyperemias

Related Publications

Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
June 2018, Journal of geriatric cardiology : JGC,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
January 2023, Journal of clinical medicine,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
October 2017, Journal of the American College of Cardiology,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
April 2023, The American journal of case reports,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
February 2018, Arquivos brasileiros de cardiologia,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
January 2017, Cardiology,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
June 2013, Metabolism: clinical and experimental,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
January 2022, BioMed research international,
Marcin Pajkowski, and Maria Dudziak, and Krzysztof Chlebus, and Marcin Hellmann
July 2023, Heart (British Cardiac Society),
Copied contents to your clipboard!