Gamma-vinyl GABA: comparison of neurochemical and anticonvulsant effects in mice. 1988

R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
Biology Research Laboratories, Pharmaceuticals Division, Ciba-Geigy Ltd, Basle, Switzerland.

Biochemical and pharmacological effects of gamma-vinyl GABA (Vigabatrin, GVG), and irreversible enzyme-activated inhibitor of 4-aminobutyrate: 2-oxoglutarate aminotransferase (EC 2.6.1.19; GABA-T), were measured in mice. This anticonvulsant produced a time- and dose-dependent elevation of the GABA, phenylalanine and lysine contents of cortical tissue and simultaneously decreased glutamate, aspartate and alanine levels. In addition, GVG caused a biphasic change in glutamine concentrations (a decline 1-4 hours after administration, followed 20 hours later by an increase). Moreover, we found a new, as yet unidentified amino acid in the brain eluting with the same retention time as alpha-aminoadipic acid from an HPLC cation-exchange column. The level of this novel chemical entity was greatly increased by GVG 20 hours after injection of the drug. At all tested intervals between 1 and 60 hours after injection, GVG was ineffective against maximal electroshock. The GABA-T inhibitor dose-dependently protected mice against isoniazid-induced seizures, simultaneously causing an increase in brain GABA concentrations. However, this apparent correlation applied only until 4 hours after treatment. To better define the anticonvulsant profile of GVG, groups of mice were treated, 1, 2, 4, and 24 hours prior to challenge with convulsant doses of strychnine, pentetrazole (PTZ), and picrotoxin, and brain amino acid levels, including brain concentrations of GVG, were measured. In all instances, the time dependency of the anticonvulsant effects of GVG and of increases in brain GABA levels differed. Amino acid concentrations in animals treated only with GVG were similar to those in animals given GVG and a chemical convulsant. GVG showed no selectivity for seizures produced by impairment of GABA-ergic neurotransmission. Although GVG is an effective GABA-T inhibitor, it apparently affects several other pyridoxal-phosphate-dependent cerebral enzymes and/or interacts with other neurotransmitter systems as well.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010433 Pentylenetetrazole A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility. Leptazole,Pentamethylenetetrazole,Pentetrazole,Cardiazol,Corasol,Corazol,Corazole,Korazol,Korazole,Metrazol,Metrazole,Pentazol,Pentylenetetrazol
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000612 4-Aminobutyrate Transaminase An enzyme that converts brain gamma-aminobutyric acid (GAMMA-AMINOBUTYRIC ACID) into succinate semialdehyde, which can be converted to succinic acid and enter the citric acid cycle. It also acts on beta-alanine. EC 2.6.1.19. Aminobutyrate Aminotransferase,GABA Transaminase,beta-Alanine Ketoglutarate Aminotransferase,GABA Aminotransferase,GABA-alpha-Ketoglutarate Aminotransferase,4 Aminobutyrate Transaminase,Aminotransferase, Aminobutyrate,Aminotransferase, GABA,Aminotransferase, GABA-alpha-Ketoglutarate,Aminotransferase, beta-Alanine Ketoglutarate,GABA alpha Ketoglutarate Aminotransferase,Ketoglutarate Aminotransferase, beta-Alanine,Transaminase, 4-Aminobutyrate,Transaminase, GABA,beta Alanine Ketoglutarate Aminotransferase
D000614 Aminocaproates Amino derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the amino caproic acid structure. Aminocaproic Acids,Aminocaproic Acid Derivatives,Aminohexanoates,Aminohexanoic Acid Derivatives,Aminohexanoic Acids,Acid Derivatives, Aminocaproic,Acid Derivatives, Aminohexanoic,Acids, Aminocaproic,Acids, Aminohexanoic,Derivatives, Aminocaproic Acid,Derivatives, Aminohexanoic Acid

Related Publications

R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
September 1981, The New England journal of medicine,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
April 1983, European journal of pharmacology,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
January 1988, Brain research,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
January 1985, General pharmacology,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
January 1989, Epilepsia,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
June 1981, Biochemical pharmacology,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
January 1992, Epilepsia,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
October 1977, European journal of pharmacology,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
September 1979, Pharmacology, biochemistry, and behavior,
R Bernasconi, and M Klein, and P Martin, and P Christen, and T Hafner, and C Portet, and M Schmutz
May 1979, Journal of neurochemistry,
Copied contents to your clipboard!