Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different conditions. 1988

D M Armstrong, and S A Edgley
Department of Physiology, Medical School, University of Bristol.

1. Extracellular microelectrodes were used in free-to-move cats to study the locomotor-related discharges of Purkinje cells in the intermediate part of lobule V of the cerebellar anterior lobe and of neurones in the underlying nucleus interpositus anterior. All cells studied discharged rhythmically during locomotion. 2. The discharges during walking at a speed of 0.5 m/s on a horizontal exercise belt were compared with those during (a) walking at 0.9 m/s (when the duration of the step cycle is shortened considerably and the amplitudes of the locomotor electromyograms (EMGs) recorded from flexor and extensor muscles of the limbs are markedly increased) and (b) during walking at 0.5 m/s with the belt tilted uphill by 30 deg (when step duration is little changed but locomotor EMGs are increased by 70-100%). 3. In each of thirty Purkinje cells the timing of the discharges relative to the forelimb step cycle showed no major difference between the two speeds of walking. Most cells discharged at slightly higher overall rates at the faster walking speed but the increase was usually modest, the average being only 5.6 impulses/s (i.e. an increase of 8%). Peak rates sometimes underwent larger increases but the average was only 11.9 impulses/s (+11%). Changes in minimum rate were generally small (an average increase of 0.3 impulses/s). 4. Among twenty-one interpositus neurones there was only one in which discharge timing relative to the step cycle was different between the two speeds. Like the Purkinje cells, most neurones discharged slightly faster at the higher speed but the average increase was only 5.5 impulses/s (+8.5%). Peak firing rates also usually showed a modest increase (averaging 6.2 impulses/s; +6.5%) while minimum rates were little changed. 5. Among nineteen Purkinje cells compared between walking uphill and on the flat only one showed any major difference in discharge phasing; overall firing rates were on average only 1.3 impulses/s (2%) higher for uphill locomotion. 6. Among twenty-one interpositus neurones discharge phasing differed markedly between walking uphill and on the flat in only two cells. Overall discharge rates were on average slightly higher uphill (by 3.5 impulses/s; 6.7%) and peak rates also usually increased slightly (on average, by 6 impulses/s; 7.7%). Minimum rates were higher, on average, by 1.6 impulses/s (+5%). 7. The findings are discussed in relation to current notions of how the intermediate part of the cerebellum may contribute to movement control and it is concluded that the neurones studies probably make little contribution to determining the vigour of the movements of steady walking.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002529 Cerebellar Nuclei Four clusters of neurons located deep within the WHITE MATTER of the CEREBELLUM, which are the nucleus dentatus, nucleus emboliformis, nucleus globosus, and nucleus fastigii. Dentate Nucleus,Nucleus Dentatus,Nucleus Emboliformis,Nucleus Fastigii,Nucleus Globosus,Amiculum of the Dentate Nucleus,Anterior Interposed Nucleus,Anterior Interpositus Nucleus,Central Nuclei,Deep Cerebellar Nuclei,Dentate Cerebellar Nucleus,Fastigial Cerebellar Nucleus,Fastigial Nucleus,Intracerebellar Nuclei,Lateral Cerebellar Nucleus,Medial Cerebellar Nucleus,Central Nucleus,Cerebellar Nuclei, Deep,Cerebellar Nucleus,Cerebellar Nucleus, Deep,Cerebellar Nucleus, Dentate,Cerebellar Nucleus, Fastigial,Cerebellar Nucleus, Lateral,Cerebellar Nucleus, Medial,Deep Cerebellar Nucleus,Emboliformis, Nucleus,Fastigii, Nucleus,Globosus, Nucleus,Interposed Nucleus, Anterior,Interpositus Nucleus, Anterior,Intracerebellar Nucleus,Nuclei, Central,Nuclei, Cerebellar,Nuclei, Deep Cerebellar,Nuclei, Intracerebellar,Nucleus Fastigius,Nucleus, Anterior Interposed,Nucleus, Anterior Interpositus,Nucleus, Central,Nucleus, Cerebellar,Nucleus, Deep Cerebellar,Nucleus, Dentate,Nucleus, Dentate Cerebellar,Nucleus, Fastigial,Nucleus, Fastigial Cerebellar,Nucleus, Intracerebellar,Nucleus, Lateral Cerebellar,Nucleus, Medial Cerebellar
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

D M Armstrong, and S A Edgley
November 1987, The Journal of physiology,
D M Armstrong, and S A Edgley
January 1972, Biofizika,
D M Armstrong, and S A Edgley
January 2009, Frontiers in systems neuroscience,
D M Armstrong, and S A Edgley
January 1967, Experimental brain research,
D M Armstrong, and S A Edgley
January 1989, Acta physiologica Polonica,
Copied contents to your clipboard!