Cervical Spinal Cord Degeneration in Spinocerebellar Ataxia Type 7. 2021

C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
From the Faculty of Computer Science (C.R.H.-C.), Dalhousie University, Halifax, Nova Scotia, Canada.

Spinocerebellar ataxia type 7 is an autosomal dominant neurodegenerative disease caused by a cytosine-adenine-guanine (CAG) repeat expansion. Clinically, spinocerebellar ataxia type 7 is characterized by progressive cerebellar ataxia, pyramidal signs, and macular degeneration. In vivo MR imaging studies have shown extensive gray matter degeneration in the cerebellum and, to a lesser extent, in a range of cortical cerebral areas. The purpose of this study was to evaluate the impact of the disease in the spinal cord and its relationship with the patient's impairment. Using a semiautomated procedure applied to MR imaging data, we analyzed spinal cord area and eccentricity in a cohort of 48 patients with spinocerebellar ataxia type 7 and compared them with matched healthy controls. The motor impairment in the patient group was evaluated using the Scale for Assessment and Rating of Ataxia. Our analysis showed a significantly smaller cord area (t = 9.04, P < .001, d = 1.31) and greater eccentricity (t = -2.25, P =. 02, d = 0.32) in the patient group. Similarly, smaller cord area was significantly correlated with a greater Scale for Assessment and Rating of Ataxia score (r = -0.44, P = .001). A multiple regression model showed that the spinal cord area was strongly associated with longer CAG repetition expansions (P = .002) and greater disease duration (P = .020). Our findings indicate that cervical spinal cord changes are progressive and clinically relevant features of spinocerebellar ataxia type 7, and future investigation of these measures as candidate biomarkers is warranted.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D020754 Spinocerebellar Ataxias A group of predominately late-onset, cerebellar ataxias which have been divided into multiple subtypes based on clinical features and genetic mapping. Progressive ataxia is a central feature of these conditions, and in certain subtypes POLYNEUROPATHY; DYSARTHRIA; visual loss; and other disorders may develop. (From Joynt, Clinical Neurology, 1997, Ch65, pp 12-17; J Neuropathol Exp Neurol 1998 Jun;57(6):531-43) Spinocerebellar Ataxia Type 1,Spinocerebellar Ataxia Type 2,Spinocerebellar Ataxia Type 4,Spinocerebellar Ataxia Type 5,Spinocerebellar Ataxia Type 6,Spinocerebellar Ataxia Type 7,Spinocerebellar Atrophies,Autosomal Dominant Cerebellar Ataxia, Type II,Cerebellar Degeneration with Slow Eye Movements,Cerebelloparenchymal Disorder I,Dominantly-Inherited Spinocerebellar Ataxias,Menzel Type OPCA,OPCA with Macular Degeneration and External Ophthalmoplegia,OPCA with Retinal Degeneration,Olivopontocerebellar Atrophy 2,Olivopontocerebellar Atrophy I,Olivopontocerebellar Atrophy II,Olivopontocerebellar Atrophy III,Olivopontocerebellar Atrophy IV,Olivopontocerebellar Atrophy, Holguin Type,SCA1,Schut-Haymaker Type OPCA,Spinocerebellar Ataxia 1,Spinocerebellar Ataxia 2,Spinocerebellar Ataxia 4,Spinocerebellar Ataxia 5,Spinocerebellar Ataxia 6,Spinocerebellar Ataxia 7,Spinocerebellar Ataxia with Slow Eye Movements,Spinocerebellar Ataxia, Autosomal Dominant, with Sensory Axonal Neuropathy,Spinocerebellar Ataxia, Cuban Type,Spinocerebellar Ataxia-1,Spinocerebellar Ataxia-2,Spinocerebellar Ataxia-4,Spinocerebellar Ataxia-5,Spinocerebellar Ataxia-6,Spinocerebellar Ataxia-7,Spinocerebellar Ataxias, Dominantly-Inherited,Spinocerebellar Atrophy 2,Spinocerebellar Atrophy I,Spinocerebellar Atrophy II,Spinocerebellar Degeneration with Slow Eye Movements,Type 1 Spinocerebellar Ataxia,Type 2 Spinocerebellar Ataxia,Type 4 Spinocerebellar Ataxia,Type 5 Spinocerebellar Ataxia,Type 6 Spinocerebellar Ataxia,Type 7 Spinocerebellar Ataxia,Wadia Swami Syndrome,Wadia-Swami Syndrome,Ataxia 1, Spinocerebellar,Ataxia 2, Spinocerebellar,Ataxia 4, Spinocerebellar,Ataxia 5, Spinocerebellar,Ataxia 6, Spinocerebellar,Ataxia 7, Spinocerebellar,Ataxia, Dominantly-Inherited Spinocerebellar,Ataxia, Spinocerebellar,Ataxias, Dominantly-Inherited Spinocerebellar,Ataxias, Spinocerebellar,Atrophies, Spinocerebellar,Atrophy 2, Olivopontocerebellar,Atrophy 2, Spinocerebellar,Atrophy 2s, Olivopontocerebellar,Atrophy 2s, Spinocerebellar,Atrophy I, Olivopontocerebellar,Atrophy I, Spinocerebellar,Atrophy II, Olivopontocerebellar,Atrophy III, Olivopontocerebellar,Atrophy IIs, Spinocerebellar,Atrophy IV, Olivopontocerebellar,Atrophy IVs, Olivopontocerebellar,Atrophy, Spinocerebellar,Cerebelloparenchymal Disorder Is,Dominantly Inherited Spinocerebellar Ataxias,Dominantly-Inherited Spinocerebellar Ataxia,OPCA, Menzel Type,OPCA, Schut-Haymaker Type,Olivopontocerebellar Atrophy 2s,Olivopontocerebellar Atrophy IIIs,Olivopontocerebellar Atrophy IIs,Olivopontocerebellar Atrophy IVs,Olivopontocerebellar Atrophy Is,SCA1s,Schut Haymaker Type OPCA,Spinocerebellar Ataxia,Spinocerebellar Ataxia 1s,Spinocerebellar Ataxia 2s,Spinocerebellar Ataxia 4s,Spinocerebellar Ataxia 5s,Spinocerebellar Ataxia 6s,Spinocerebellar Ataxia 7s,Spinocerebellar Ataxia, Dominantly-Inherited,Spinocerebellar Ataxias, Dominantly Inherited,Spinocerebellar Atrophy,Spinocerebellar Atrophy 2s,Spinocerebellar Atrophy IIs,Spinocerebellar Atrophy Is,Swami Syndrome, Wadia,Syndrome, Wadia Swami,Syndrome, Wadia-Swami
D066193 Cervical Cord The segment of the spinal cord within the CERVICAL VERTEBRAE. Accessory Nucleus,Cervical Spinal Cord,Phrenic Nucleus,Cervical Cords,Cervical Spinal Cords,Cord, Cervical,Cord, Cervical Spinal,Cords, Cervical,Cords, Cervical Spinal,Nucleus, Accessory,Nucleus, Phrenic,Spinal Cord, Cervical,Spinal Cords, Cervical

Related Publications

C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
December 2013, Arquivos de neuro-psiquiatria,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
August 2017, Cerebellum (London, England),
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
November 2016, AJNR. American journal of neuroradiology,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
March 2014, Journal of neurology,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
January 2012, Handbook of clinical neurology,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
January 2011, Jornal da Sociedade Brasileira de Fonoaudiologia,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
August 2002, Journal of Korean medical science,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
January 2017, Annals of Indian Academy of Neurology,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
January 1999, Ryoikibetsu shokogun shirizu,
C R Hernandez-Castillo, and R Diaz, and T J R Rezende, and I Adanyeguh, and I H Harding, and F Mochel, and J Fernandez-Ruiz
January 2014, PloS one,
Copied contents to your clipboard!