Computer simulation study of the shape of motor unit action potential. 1988

M Piotrkiewicz
Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw.

Motor unit action potentials (MUAPs) of brachial biceps were simulated. A simulated MUAP was obtained as a sum of single fibre action potentials (SFAPs) from all the muscle fibres of a motor unit (MU). The influence of the following factors on MUAP shape for different kinds of recording electrode was studied: fibre density, neuromuscular jitter, temporal dispersion and electrode displacements. The simulation confirms that typical MUAPs recorded with needle electrodes from muscles of low fibre density such as brachial biceps are usually triphasic. Increased fibre density produces MUAPs of more complex shape and higher amplitude. Normal neuromuscular jitter is responsible for the variability of shape of subsequent potentials from the same MU as well as for electromyographic shimmer. Pathologic (increased) jitter makes the shapes of subsequent potentials unrecognizable. The influence of temporal dispersion is interconnected with other factors but rather of minor importance. The simulation shows how big changes in MUAP shape can be expected due to electrode displacements during single experiment or during estimation of MU territory.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009468 Neuromuscular Diseases A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA. Amyotonia Congenita,Oppenheim Disease,Cramp-Fasciculation Syndrome,Fasciculation-Cramp Syndrome, Benign,Foley-Denny-Brown Syndrome,Oppenheim's Disease,Benign Fasciculation-Cramp Syndrome,Benign Fasciculation-Cramp Syndromes,Cramp Fasciculation Syndrome,Cramp-Fasciculation Syndromes,Fasciculation Cramp Syndrome, Benign,Fasciculation-Cramp Syndromes, Benign,Foley Denny Brown Syndrome,Neuromuscular Disease,Oppenheims Disease,Syndrome, Cramp-Fasciculation,Syndrome, Foley-Denny-Brown,Syndromes, Cramp-Fasciculation
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D001132 Arm The superior part of the upper extremity between the SHOULDER and the ELBOW. Brachium,Upper Arm,Arm, Upper,Arms,Arms, Upper,Brachiums,Upper Arms

Related Publications

M Piotrkiewicz
September 1978, Biological cybernetics,
M Piotrkiewicz
January 1982, Electromyography and clinical neurophysiology,
M Piotrkiewicz
May 1984, Electromyography and clinical neurophysiology,
M Piotrkiewicz
January 1996, Medical & biological engineering & computing,
M Piotrkiewicz
March 1989, Muscle & nerve,
M Piotrkiewicz
July 2020, IEEE transactions on bio-medical engineering,
M Piotrkiewicz
March 2012, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
M Piotrkiewicz
November 1999, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Copied contents to your clipboard!