Structure and expression of the human theta 1 globin gene. 1988

S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
Institute of Molecular Biology, Academia Sinica, Taiwan, Republic of China.

The recently identified theta-globin gene subfamily consists of the theta 1-globin gene located downstream from the alpha 1-globin gene, and several other members including at least one truncated, processed pseudogene psi theta 2 (refs 1,6). Unlike the theta 1-globin genes of the rabbit and galago, the structure of these genes in the orangutan and baboon and their flanking regions show no apparent defects that would prevent their expression. Both theta 1-globin genes are split into three exons with the potential to code for a polypeptide of length 141 amino acids. Besides differing by 26% in replacement-site substitutions, the theta 1 and alpha 1-globin genes of the orangutan and baboon also differ in their promoter structures, in the use of TGA versus TAA as the termination codon, and in the use of AGTAAA versus AATAAA as the polyadenylation signal. In contrast, the two theta 1-globin genes from primates only differ by 1.7% in the replacement-site substitutions. Here we present the complete DNA sequence of a cloned theta 1-globin gene of humans, and show that it contains no apparent defects that would abolish its expression. Furthermore, by primer extension of single-stranded oligonucleotide probes, we show that the theta 1-globin gene of humans is transcribed in an erythroleukemia cell line K562. Three messenger RNA species were detected, with 5'-ends mapping to approximately 70 base pairs (bp) downstream from a TATA promoter sequence, at 8 bp downstream from a GGGCGG promoter sequence and at 40 bp upstream from the ATG inititrion codon, respectively. Haemin treatment of the K562 cells slightly enhances the level of the longest theta 1-transcript. Our results provide strong evidence that the theta 1-globin gene of humans is transcriptionally active in cells of erythroid origin, and suggests the presence of a functional theta 1-polypeptide in specific cells, possibly those of early erythroid tissue.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
April 1988, Biochemical genetics,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
October 1989, Nucleic acids research,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
January 1974, Cold Spring Harbor symposia on quantitative biology,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
December 1990, American journal of hematology,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
September 1992, Blood,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
January 1986, Nature,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
November 1989, British journal of haematology,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
March 1993, Bailliere's clinical haematology,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
January 1987, Nature,
S L Hsu, and J Marks, and J P Shaw, and M Tam, and D R Higgs, and C C Shen, and C K Shen
March 1979, Nature,
Copied contents to your clipboard!