The malate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, characterisation and studies on their regulation. 1978

E Hägele, and J Neeff, and D Mecke

1. One mitochondrial and one cytoplasmic malate dehydrogenase isoenzyme could be purified from acetate grown cells of the yeast Saccharomyces cerevisiae. 2. The purification procedure uses chromatography on dextran blue columns as an essential step for enrichment, and reverse ammonium sulfate chromatography on celite for isoenzyme separation. 3. The homogeneity of the preparations was established by gel electrophoreses in the presence of sodium dodecylsulfate and by a sedimentation run in the analytical ultracentrifuge. 4. Both enzymes are dimers with a molecular weight of 75 000 for the cytoplasmic and of 68 000 for the mitochondrial enzyme. 5. Amino acid analysis and peptide mapping showed that both enzymes are closely related, but genetically different (true isoenzymes). 6. The cytoplasmic enzyme shows electrophoretic splitting. This is most likely due to post-translational deamination in vivo. 7. Antibodies to both isoenzymes could be obtained in rabbits. The antisera to cytoplasmic malate dehydrogenase were specific for this enzyme. Antisera to mitochondrial malate dehydrogenase react with both isoenzymes. Neither type of antisera precipitated an inactive protein after the glucose-dependent inactivation of cytoplasmic malate dehydrogenase in vivo.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

E Hägele, and J Neeff, and D Mecke
December 1968, European journal of biochemistry,
E Hägele, and J Neeff, and D Mecke
October 1966, Biochimica et biophysica acta,
E Hägele, and J Neeff, and D Mecke
September 1972, Biochimica et biophysica acta,
E Hägele, and J Neeff, and D Mecke
January 2020, Journal of biomaterials science. Polymer edition,
E Hägele, and J Neeff, and D Mecke
November 2001, The Journal of biological chemistry,
E Hägele, and J Neeff, and D Mecke
October 2018, Acta crystallographica. Section F, Structural biology communications,
E Hägele, and J Neeff, and D Mecke
April 1993, FEBS letters,
E Hägele, and J Neeff, and D Mecke
January 1976, Problemy endokrinologii,
E Hägele, and J Neeff, and D Mecke
September 1973, Archives of biochemistry and biophysics,
Copied contents to your clipboard!