Surface dose and build-up region depth dose measurements in non-standard beams of Cyberknife and tomotherapy systems. 2021

Amalraj Jerrin, and Velayudham Ramasubramanian
Central Physics, Department of Radiation Oncology, HCG Enterprises Ltd., Bangalore, 560027, India.

The purpose of this study was to measure the surface dose and build-up region depth dose characteristics of 6 MV photon beams in Cyberknife and helical tomotherapy (HT) systems for non-standard small fields using parallel plate chambers (Roos and Markus), Gafchromic EBT3 films, and nanoDot optically stimulated luminescence dosimeters (OSLDs), as well as to investigate the effect of oblique incidence on the surface dose of the beam. All measurements were conducted in a virtual water phantom under machine-specific reference conditions. The Roos and OSLDs overestimated the surface dose when compared with the Markus chamber and EBT3 films by 20%. We applied water equivalent thickness (WET) correction to account for the intrinsic build-up thickness of the detectors from their effective point of measurement (EPOM). With WET correction, a reasonably close surface dose estimate was obtained for all detectors, within 1.9% agreement for the 60 mm collimator of Cyberknife and 3.1% agreement for the HT system, with a 5 × 10 cm2 field size. The surface dose increased from the normally incident Cyberknife and HT fields with increasing angle of incidence. The surface dose increased to twice its value at normal incidence for highly oblique angles of incidence above 55°. For the tested fields, a reasonable surface dose estimate could be measured with the detectors if the correction for intrinsic buildup thickness was applied. Nevertheless, the use of Roos chambers with large dimensions and nanoDot OSLDs is not recommended for estimating the surface dose for small fields.

UI MeSH Term Description Entries
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D000072232 Radiation Dosimeters Devices that measure exposure to IONIZING RADIATION. Dosimeters,Radiation Dosimeter,Dosimeter,Dosimeter, Radiation,Dosimeters, Radiation
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D049449 Luminescence Emission of LIGHT when ELECTRONS return to the electronic ground state from an excited state and lose the energy as PHOTONS. It is sometimes called cool light in contrast to INCANDESCENCE. LUMINESCENT MEASUREMENTS take advantage of this type of light emitted from LUMINESCENT AGENTS. Luminescence, Physical,Chemiluminescence,Chemiluminescence, Physical,Physical Chemiluminescence,Physical Luminescence
D050397 Radiotherapy, Intensity-Modulated CONFORMAL RADIOTHERAPY that combines several intensity-modulated beams to provide improved dose homogeneity and highly conformal dose distributions. Helical Tomotherapy,Intensity-Modulated Arc Therapy,Volumetric-Modulated Arc Therapy,Arc Therapies, Intensity-Modulated,Arc Therapies, Volumetric-Modulated,Arc Therapy, Intensity-Modulated,Arc Therapy, Volumetric-Modulated,Helical Tomotherapies,Intensity Modulated Arc Therapy,Intensity-Modulated Arc Therapies,Intensity-Modulated Radiotherapies,Intensity-Modulated Radiotherapy,Radiotherapies, Intensity-Modulated,Radiotherapy, Intensity Modulated,Therapies, Intensity-Modulated Arc,Therapies, Volumetric-Modulated Arc,Therapy, Intensity-Modulated Arc,Therapy, Volumetric-Modulated Arc,Tomotherapies, Helical,Tomotherapy, Helical,Volumetric Modulated Arc Therapy,Volumetric-Modulated Arc Therapies
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Amalraj Jerrin, and Velayudham Ramasubramanian
February 2010, Japanese journal of radiology,
Amalraj Jerrin, and Velayudham Ramasubramanian
October 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
Amalraj Jerrin, and Velayudham Ramasubramanian
January 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
Amalraj Jerrin, and Velayudham Ramasubramanian
June 2016, Zeitschrift fur medizinische Physik,
Amalraj Jerrin, and Velayudham Ramasubramanian
February 1978, The British journal of radiology,
Amalraj Jerrin, and Velayudham Ramasubramanian
April 1971, Acta radiologica: therapy, physics, biology,
Amalraj Jerrin, and Velayudham Ramasubramanian
May 2000, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
Amalraj Jerrin, and Velayudham Ramasubramanian
June 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Copied contents to your clipboard!