[Determination of 16 organophosphate esters in human blood by high performance liquid chromatography-tandem mass spectrometry combined with liquid-liquid extraction and solid phase extraction]. 2021

Minmin Hou, and Yali Shi, and Yaqi Cai
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100083, China.

Measurement of organophosphate esters (OPEs) in human body fluids is important for understanding human internal exposure to OPEs and for assessing related health risks. Most of the current studies have focused on the determination of OPE metabolites in human urine, as OPEs are readily metabolized into their diester or hydroxylated forms in the human body. However, given the existence of one metabolite across multiple OPEs or multiple metabolites of one OPE, as well as the low metabolic rates of several OPEs in in vitro studies, the reliability of urinary OPE metabolites as biomarkers for specific OPEs is needs to be treated with caution.Human blood is a matrix that is in contact with all body organs and tissues, and the blood levels of compounds may better represent the doses that reach target tissues. Currently, only a few studies have investigated the occurrence of OPEs in human blood by different analytical methods, and the variety of OPEs considered is limited. In this study, a method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of 16 OPEs in human blood, and the extraction efficiency of the solid phase extraction (SPE) column for OPEs was verified. To human blood samples, 10 ng of an internal standard was added, followed by mixing and aging for 30 min. The samples were extracted three times with acetonitrile using a shaker, and then purified on ENVI-18 cartridges with acetonitrile containing 25% dichloromethane as the eluent. Finally, the OPEs were analyzed by high performance liquid chromatography-tandem mass spectrometry. After optimization of the analytical column and mobile phases, the analytes were separated on a BEH C18 column (100 mm×2.1 mm, 1.7 μm) by gradient elution using methanol and 5 mmol/L ammonium acetate in water as the mobile phase. Then, the analytes were ionized in electrospray ionization positive (ESI+) mode and detected in the multiple reaction monitoring (MRM) mode. The mass spectral parameters, including the precursor ion, product ion, declustering potential, entrance potential, and collision cell exit potential, were optimized. The results were quantified by the internal standard method. The limits of detection (LOD, S/N=3) of the OPEs were in the range of 0.0038-0.882 ng/mL. The calibration curves for the 16 OPEs showed good linear relationships in the range of 0.1-50 ng/mL, and the correlation coefficients were >0.995. The extraction efficiency of the ENVI-18 column for the 16 OPEs was validated, and the average recoveries of the target compounds were 54.6%-104%. The average recoveries (n=3) of 15 OPEs, except trimethyl phosphate (TMP), in whole blood at three spiked levels were in the range of 53.1%-126%, and the relative standard deviations (RSDs) were in the range of 0.15%-12.6%. The average recoveries of six internal standards were in the range of 66.8%-91.6% except for TMP-d9 (39.1%), with RSDs of 3.52%-6.85%. The average matrix effects of the OPEs in whole blood were 56.4%-103.0%. Significant matrix effects were found for resorcinol bis(diphenyl phosphate) (RDP) (75.8%±1.4%), trimethylphenyl phosphate (TMPP) (68.4%±1.0%), 2-ethylhexyl di-phenyl phosphate (EHDPP) (56.4%±12.4%), and bisphenol-A bis(diphenyl phosphate) (BABP) (58.5%±0.4%). However, these effects could be corrected by similar signal suppressions of the corresponding internal standard (TPHP-d15, 77.4%±7.5%). This method is simple, highly sensitive, and suitable for the determination of OPEs in human blood. Fifteen human whole blood samples were collected to quantify the 16 OPEs using the developed method. The total concentrations of the OPEs ranged from 1.50 to 7.99 ng/mL. The detection frequencies of eight OPEs were higher than 50%. Tri-iso-butyl phosphate (TiBP), tri(2-chloroethyl) phosphate (TCEP), and tri(1-chloro-2-propyl) phosphate (TCIPP) were the dominant OPEs, with median concentrations of 0.813, 0.764, and 0.690 ng/mL, respectively. These results indicated widespread human exposure to OPEs, which should be of concern.

UI MeSH Term Description Entries
D010755 Organophosphates Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P( Organophosphate,Phosphates, Organic,Phosphoric Acid Esters,Organopyrophosphates,Acid Esters, Phosphoric,Esters, Phosphoric Acid,Organic Phosphates
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004952 Esters Compounds derived from organic or inorganic acids in which at least one hydroxyl group is replaced by an –O-alkyl or another organic group. They can be represented by the structure formula RCOOR’ and are usually formed by the reaction between an acid and an alcohol with elimination of water. Ester
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D052616 Solid Phase Extraction An extraction method that separates analytes using a solid phase and a liquid phase. It is used for preparative sample cleanup before analysis by CHROMATOGRAPHY and other analytical methods. Extraction, Solid Phase,Extractions, Solid Phase,Solid Phase Extractions
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem
D059625 Liquid-Liquid Extraction The removal of a soluble component from a liquid mixture by contact with a second liquid, immiscible with the carrier liquid, in which the component is preferentially soluble. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Liquid Phase Extraction,Extraction, Liquid Phase,Extraction, Liquid-Liquid,Extractions, Liquid Phase,Extractions, Liquid-Liquid,Liquid Liquid Extraction,Liquid Phase Extractions,Liquid-Liquid Extractions,Phase Extraction, Liquid,Phase Extractions, Liquid

Related Publications

Minmin Hou, and Yali Shi, and Yaqi Cai
July 2012, Se pu = Chinese journal of chromatography,
Minmin Hou, and Yali Shi, and Yaqi Cai
May 2013, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
Copied contents to your clipboard!