Differential Survival of Non-O157 Shiga Toxigenic Escherichia coli in Simulated Cattle Feedlot Runoff. 2021

Lisa M Durso, and John E Gilley, and Daniel N Miller
USDA, ARS, Lincoln, Nebraska, USA.

Environmental survival time is important when evaluating adverse health outcomes from foodborne pathogens. Although outbreaks associated with manure-impacted irrigation or runoff water are relatively infrequent, their broad scope, regulatory importance, and severe health outcomes highlight the need to better understand the environmental survival of manure-borne pathogens. Shiga toxigenic Escherichia coli (STEC) are excreted in feces and persist in the environment until they die or recolonize a new host. Surface waters contaminated with manure-borne STEC can infect humans through drinking and recreational water use or irrigated crops that are minimally cooked. In this study, manure-impacted water microcosms mimicking beef cattle feedlot runoff were used to assess survival of STEC strains representing seven STEC serotypes (O26, O45, O103, O111, O121, O145, and O157) and persistence of target O antigen genes. Microcosms were sampled over the course of 1 year, and the entire experiment was repeated in a second year. Culture and polymerase chain reaction (PCR)-based techniques were used for detection and enumeration. Serotype-specific survival results were observed. Both STEC O26 and O45 declined slowly and remained culturable at 24 months. In contrast, STEC O121 and O145 decreased rapidly (-0.84 and -1.99 log10 abundance per month, respectively) and were unculturable by months 4 and 5, but detectable by PCR for a mean of 4.5 and 8.3 months, respectively. STEC O103, O111, and O157 remained culturable for a mean of 11.6, 5.5, and 15 months and detectable by PCR for a mean of 12, 13.8, and 18.6 months after inoculation, respectively. Results document that some STEC serotypes have the biological potential to survive in manure-impacted waters for extended periods of time when competing microflora are eliminated. Serotype-specific differences in survival of target bacteria and persistence of target genes were observed in this sample set, with STEC O26 and O45 strains appearing the most robust in these microcosm studies.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D054323 Shiga-Toxigenic Escherichia coli Strains of ESCHERICHIA COLI with the ability to produce at least one or more of at least two antigenically distinct, usually bacteriophage-mediated cytotoxins: SHIGA TOXIN 1 and SHIGA TOXIN 2. These bacteria can cause severe disease in humans including bloody DIARRHEA and HEMOLYTIC UREMIC SYNDROME. E coli, Verotoxigenic,Escherichia coli, Verotoxigenic,STEC,Verotoxigenic Escherichia coli,Shiga Toxigenic E. coli,Shiga Toxigenic Escherichia coli,Shiga Toxin-Producing Escherichia coli,VTEC,Vero Cytotoxin-Producing Escherichia coli,Verotoxigenic E. coli,Verotoxin-Producing Escherichia coli
D019081 O Antigens The lipopolysaccharide-protein somatic antigens, usually from gram-negative bacteria, important in the serological classification of enteric bacilli. The O-specific chains determine the specificity of the O antigens of a given serotype. O antigens are the immunodominant part of the lipopolysaccharide molecule in the intact bacterial cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) O-Antigen,O-Specific Polysaccharides,O Antigen,O Antigen, Bacterial,O-Antigens,O-Specific Polysaccharide,Antigen, Bacterial O,Antigen, O,Antigens, O,Bacterial O Antigen,O Specific Polysaccharide,O Specific Polysaccharides,Polysaccharide, O-Specific,Polysaccharides, O-Specific
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins
D065288 Serogroup A set of variants within a species of microorganisms that are antigenically, closely related. With bacteria, a serogroup refers to a group that shares a common antigen. Serotype,Serovar,Serogroups,Serotypes,Serovars

Related Publications

Lisa M Durso, and John E Gilley, and Daniel N Miller
April 2004, Journal of the American Veterinary Medical Association,
Lisa M Durso, and John E Gilley, and Daniel N Miller
May 2018, Journal of food protection,
Lisa M Durso, and John E Gilley, and Daniel N Miller
March 2002, Journal of the American Veterinary Medical Association,
Lisa M Durso, and John E Gilley, and Daniel N Miller
January 2007, Critical reviews in microbiology,
Lisa M Durso, and John E Gilley, and Daniel N Miller
May 1997, Journal of food protection,
Lisa M Durso, and John E Gilley, and Daniel N Miller
January 2015, BioMed research international,
Lisa M Durso, and John E Gilley, and Daniel N Miller
August 2010, Applied and environmental microbiology,
Lisa M Durso, and John E Gilley, and Daniel N Miller
July 2015, Canadian journal of microbiology,
Lisa M Durso, and John E Gilley, and Daniel N Miller
December 2006, Clinical and vaccine immunology : CVI,
Copied contents to your clipboard!