Autophosphorylation of untrained and well-trained skeletal muscle myosin. 1987

S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
Second Institute of Biochemistry, Semmelweis University Medical School, Budapest, Hungary.

Earlier the autophosphorylation of myosin and the labile phosphate (P) content of rabbit skeletal muscle was reported [6, 7, 9]. The present paper describes that the endogeneous preformed P level in fresh preparation of exercised muscle is higher than that of untrained control one. It was revealed that the presence of a significant amount of mitochondrial myosin (with much higher P content) in the well-trained human muscle preparations falsified the appreciation of myofibrillar myosin. Therefore, a reliable myofibrillar preparation with correct P content from exercised subjects was obtained only after the separation of mitochondrial fraction. The P content of fresh preparations can be increased by phosphorylation even in the exercised muscle myosins up to the most higher level in human samples. The phosphoryl group incorporation from [gamma-32P]ATP into the rabbit and hare myosins was checked by radioactive tracer technique, and confirmed by total P content determination performed parallel with molybdate test. It was stated that under present circumstances the labelled 32P incorporation was lower even at an optimal substrate concentration than that of P value obtained directly with molybdate method; because the total P content of preparations had not exchanged during 2 min incubation. So it has been concluded from [gamma-23P] phosphoryl group assayments that much higher amount of P was incorporated into P-Arg, N pi-P-His and fraction 2 as compared with unappreciated labelled P level of the inorganic P (P-Ser, P-Thr), P-Lys, N tau-P-His and minor fractions. From these observations it has been considered that the P-Arg, N pi-P-His and fraction 2 take part in the contraction mechanism and in the course of physical training.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
June 1970, Acta physiologica Scandinavica,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
June 1971, Journal of applied physiology,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
December 1972, The American journal of physiology,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
September 2017, Journal of strength and conditioning research,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
September 1997, Acta physiologica Scandinavica,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
July 1992, Biochemistry,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
July 1992, Equine veterinary journal,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
May 1992, American journal of veterinary research,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
April 1984, Acta physiologica Scandinavica,
S Fazekas, and G Berentey, and S Györgyi, and V Székessy-Hermann
March 1997, Cardiovascular research,
Copied contents to your clipboard!