Characterization of intestinal brush border cytoskeletal proteins of normal and neoplastic human epithelial cells. A comparison with the avian brush border. 1987

J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
Department of Biology, Yale University School of Medicine, New Haven, Connecticut 06510.

The elaborate cytoskeletal matrix underlying the intestinal epithelial cell brush border (BB) is the hallmark of a mature enterocyte. As such, alterations in this structure are potentially useful as markers aiding in the recognition of subtle defects in cell maturation, such as those accompanying dysplasia and neoplasia. For exploration of this hypothesis, the BB components of human ileal and colonic enterocytes have been compared structurally and biochemically with the well-characterized avian BB, and alterations in the BB cytoskeleton in various states of dysplasia and neoplasia have been identified. Ultrastructural analysis of isolated human ileal BBs indicate that the human BB is structurally homologous to BBs isolated from chicken and other mammalian sources. Like other mammalian BBs (eg, from rat) the terminal web cytoskeleton of the human BB is less extensive than that in the avian BB. Immunochemical analysis of isolated human BBs indicates that the major proteins of the avian microvillar actin bundle, villin, fimbrin, and the 110-kd subunit of the 110K-calmodulin complex, are all present in the human BB. The terminal web protein myosin is also present. Unlike the terminal web of the avian BB, which contains a BB-specific isoform of spectrin, TW 260/240, the human BB contains the more widely distributed spectrin isoform, fodrin. In addition, the human BB contains multiple proteins immunoreactive with antibodies to protein 4.1, a spectrin/actin binding protein that is absent from the avian BB. Immunolocalization studies examining the distribution of the BB-specific microvillar protein, villin, in human colonic mucosa indicate that the localization of this protein is disrupted in certain dysplastic and neoplastic states. Thus, both the expression and/or distribution of BB-specific proteins such as villin may be useful markers for defects in the differentiation state of the enterocyte.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
January 1982, Cold Spring Harbor symposia on quantitative biology,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
January 1984, Kroc Foundation series,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
November 1978, The Journal of cell biology,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
April 1972, Biochemistry,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
September 1973, Biochimica et biophysica acta,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
January 1980, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
October 2008, American journal of physiology. Gastrointestinal and liver physiology,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
January 1988, Cell motility and the cytoskeleton,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
March 1981, The Biochemical journal,
J M Carboni, and C L Howe, and A B West, and K W Barwick, and M S Mooseker, and J S Morrow
December 1986, European journal of cell biology,
Copied contents to your clipboard!