Osteoclasts in Tumor Biology: Metastasis and Epithelial-Mesenchymal-Myeloid Transition. 2021

Kemal Behzatoglu
Acibadem Health Group, Pathology Department, Istanbul, Turkey.

Osteoclast is a specialized cell that originates from monocytic lineage, communicates closely with osteoblasts under physiological conditions, participates in bone modeling and re-modeling, contributes to calcium homeostasis and osteoimmunity. In pathological conditions, it is involved in many tumors such as giant cell bone tumor (osteoclastoma), aneurysmal bone cyst, osteosarcoma, and metastatic cancers, and it usually causes local spread and progression of the tumor, working against the host. Since osteoclasts play an active role in primary bone tumors and bone metastases, the use of anti-osteoclastic agents significantly reduces the mortality and morbidity rates of patients by preventing the progression and local spread of tumors. Osteoclasts also accompany undifferentiated carcinomas of many organs, especially pancreas, thyroid, bladder and ovary. Undifferentiated carcinomas rich in osteoclasts have osteoclastoma-like histology. In these organs, osteoclastoma-like histology may accompany epithelial carcinomas, and de novo, benign and borderline tumors. Mature and immature myeloid cells, including osteoclasts, play an active role in the tumor progression in primary and metastatic tumor microenvironment, in epithelial-mesenchymal transition (EMT), mesenchymal-epithelial-transition (MET), and cancer stem cell formation. Additionally, they are the most suitable candidates for cancer cells in cell fusion due to their evolutionary fusion capabilities. Myeloid features and markers (CD163, CD33, CD68 etc.) can be seen in metastatic cancer cells. Consequently, they provide metastatic cancer cells with motility, margination, transmigration, chemotaxis, phagocytosis, angiogenesis, matrix degradation, and resistance to chemotherapy. For these reasons, we think that the concept of Epithelial-Mesencyhmal-Myeloid-Transition (EMMT) will be more accurate than EMT for cancer cells with myeloid properties.

UI MeSH Term Description Entries
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D058750 Epithelial-Mesenchymal Transition Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition. Epithelial-Mesenchymal Transformation,Epithelial Mesenchymal Transformation,Epithelial Mesenchymal Transition,Transformation, Epithelial-Mesenchymal,Transition, Epithelial-Mesenchymal

Related Publications

Kemal Behzatoglu
July 2011, Zhongguo fei ai za zhi = Chinese journal of lung cancer,
Kemal Behzatoglu
January 2017, Molecular oncology,
Kemal Behzatoglu
January 2018, Annual review of pathology,
Kemal Behzatoglu
December 2019, Acta biochimica Polonica,
Kemal Behzatoglu
November 2004, Cancer biology & therapy,
Kemal Behzatoglu
January 2022, The International journal of developmental biology,
Kemal Behzatoglu
March 2015, Clinical cancer research : an official journal of the American Association for Cancer Research,
Copied contents to your clipboard!