Specific stimulation of steroid 5 alpha-reductase solubilized from rat liver microsomes by endogenous phosphatidylserine. 1987

K Ichihara, and C Tanaka
Department of Biochemistry, Kawasaki Medical School, Kurashiki, Japan.

Dilauroylphosphatidylcholine caused a marked increase in progesterone 5 alpha-reductase activity solubilized from rat liver microsomes, whereas naturally occurring phosphatidylcholines from biological sources as well as dioleoylphosphatidylcholine had not effect on the activity. Therefore, the stimulatory effect of phospholipids normally found in rat liver microsomes was examined. The lipid extracts were prepared from the fraction which was freed from 5 alpha-reductase activity by DEAE-cellulose chromatography, and found to exhibit a strong stimulatory effect. The lipid extracts were then separated into phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine by chromatography on silicic acid column and preparative thin-layer plate. Among these endogenous phospholipids, only phosphatidylserine stimulated the 5 alpha-reductase, suggesting that the lipid requirement is specific for phosphatidylserine in steroid 5 alpha-reductase from liver microsomes.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Ichihara, and C Tanaka
April 1985, The Journal of biological chemistry,
K Ichihara, and C Tanaka
July 1985, Biological chemistry Hoppe-Seyler,
K Ichihara, and C Tanaka
October 1993, Proceedings of the National Academy of Sciences of the United States of America,
K Ichihara, and C Tanaka
September 1973, Biochemical and biophysical research communications,
K Ichihara, and C Tanaka
October 1974, Biochemical and biophysical research communications,
K Ichihara, and C Tanaka
December 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!