miR-7 regulates the apoptosis of chicken primary myoblasts through the KLF4 gene. 2022

X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
College of Animal Science and Technology, Yangzhou University, Yangzhou, China.

1. MicroRNAs (miRNAs) play a vital role in the proliferation, differentiation, and apoptosis of myoblasts. However, the effect of miR-7 on the apoptosis of chicken primary myoblasts (CPMs) and its mechanism is still unclear.2. In this study, the expression of apoptosis marker genes (RAF1, Caspase3, Caspase9, Cytc, Fas) in CPMs was significantly increased after transfection of miR-7 mimic. The expression of the apoptosis marker genes in CPMs was significantly reduced after transfection with miR-7 inhibitor. Flow cytometry showed that the late apoptosis rate of the mimic group was significantly higher than the negative control (NC). The viable cells of the mimic group were significantly lower than the NC. In contrast, inhibition of miR-7 had the opposite effect.3. The dual-luciferase assay showed that the KLF4 was a target gene of miR-7. The rescue experiment showed that the KLF4 gene could attenuate the effect of miR-7 on the expression of apoptosis marker genes in CPMs.4. Determination of the function the KLF4 gene showed that the expression of the apoptosis marker genes in CPMs decreased significantly compared with the NC after its overexpression. Inhibition of KLF4 gene had the opposite effect. Flow cytometry showed that overexpression of the KLF4 gene inhibited early apoptosis of myoblasts (P ≤ 0.01), while interference with the KLF4 gene could promote early apoptosis of myoblasts (P ≤ 0.001).5. The results demonstrated, for the first time, that miR-7 promotes apoptosis in chicken primary myoblasts by regulating the expression of the KLF4 gene.

UI MeSH Term Description Entries
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000090062 Kruppel-Like Factor 4 A member of zinc finger-containing transcription factors that belongs to the KRUPPEL-LIKE FACTOR family, involved in the regulation of diverse cellular processes such as cell growth, proliferation, differentiation, and APOPTOSIS. EZF Protein,Endothelial Kruppel-Like Zinc Finger Protein,Epithelial Zinc Finger Protein,GKLF Protein,Gut-Enriched Kruppel-Like Factor,Klf4 Protein,Krueppel-Like-Factor 4,4, Krueppel-Like-Factor,4, Kruppel-Like Factor,Endothelial Kruppel Like Zinc Finger Protein,Factor 4, Kruppel-Like,Factor, Gut-Enriched Kruppel-Like,Gut Enriched Kruppel Like Factor,Kruppel Like Factor 4,Protein, EZF,Protein, GKLF,Protein, Klf4
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D032446 Myoblasts Embryonic (precursor) cells of the myogenic lineage that develop from the MESODERM. They undergo proliferation, migrate to their various sites, and then differentiate into the appropriate form of myocytes (MYOCYTES, SKELETAL; MYOCYTES, CARDIAC; MYOCYTES, SMOOTH MUSCLE). Muscle Cells, Embryonic,Muscle Cells, Precursor,Embryonic Muscle Cell,Embryonic Muscle Cells,Muscle Cell, Embryonic,Muscle Cell, Precursor,Myoblast,Precursor Muscle Cell,Precursor Muscle Cells
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
August 2022, International journal of molecular sciences,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
February 2022, Poultry science,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
June 2016, Journal of bone oncology,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
August 2022, British poultry science,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
December 2022, British poultry science,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
October 2010, The Journal of cell biology,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
October 2022, Animals : an open access journal from MDPI,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
February 2024, In vitro cellular & developmental biology. Animal,
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
August 2023, Cellular and molecular biology (Noisy-le-Grand, France),
X Zhang, and F Chen, and M He, and P Wu, and K Zhou, and T Zhang, and M Chu, and G Zhang
January 2024, Poultry science,
Copied contents to your clipboard!