Kinetic studies of modifier effects on the carboxypeptidase A catalyzed hydrolyses of peptides. 1987

J F Sebastian, and R S Hinks, and R V Reuland
Department of Chemistry, Miami University, Oxford, OH 45056.

A variety of modifiers of carboxypeptidase A (CPA) have been investigated in an effort to understand the structural requirements of inhibitors and activators of peptidase activity. It is proposed that an understanding of the mechanism of action of reversible activators of the enzyme may bear on the long standing question of whether the detailed mechanism of peptidase activity is different from that of esterase activity. An analog of the activator 2,2-dimethyl-2-silapentane-5-sulfonate, 5,5-dimethylhexanoate, was found to be a competitive inhibitor of the CPA-catalyzed hydrolysis of benzoylglycyl-L-phenylalanine. The modifier 4-phenyl-3-butenoate (styrylacetic acid) was determined to be an activator. The sulfonates benzene-sulfonate, p-toluenesulfonate, phenylmethanesulfonate, 2-phenylethanesulfonate, and 3-phenylpropanesulfonate were all found to be activators.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D043422 Carboxypeptidases A Carboxypeptidases that are primarily found the DIGESTIVE SYSTEM that catalyze the release of C-terminal amino acids. Carboxypeptidases A have little or no activity for hydrolysis of C-terminal ASPARTIC ACID; GLUTAMIC ACID; ARGININE; LYSINE; or PROLINE. This enzyme requires ZINC as a cofactor and was formerly listed as EC 3.4.2.1 and EC 3.4.12.2. Carboxypeptidase A,Carboxypeptidase A1,Carboxypeptidase A2,Carboxypeptidase A5,PCPA1 Enzyme,PCPA2 Enzyme,Procarboxypeptidase A,Procarboxypeptidase A1,Procarboxypeptidase A2

Related Publications

J F Sebastian, and R S Hinks, and R V Reuland
October 1967, Biochemical and biophysical research communications,
J F Sebastian, and R S Hinks, and R V Reuland
May 1978, Canadian journal of biochemistry,
J F Sebastian, and R S Hinks, and R V Reuland
January 1966, Biochemistry,
J F Sebastian, and R S Hinks, and R V Reuland
October 1970, Journal of the American Chemical Society,
J F Sebastian, and R S Hinks, and R V Reuland
February 1966, Biochemistry,
J F Sebastian, and R S Hinks, and R V Reuland
February 1972, Biochemistry,
J F Sebastian, and R S Hinks, and R V Reuland
July 1983, Proceedings of the National Academy of Sciences of the United States of America,
J F Sebastian, and R S Hinks, and R V Reuland
July 1974, Journal of biochemistry,
Copied contents to your clipboard!