The two-dimensional spatial structure of simple receptive fields in cat striate cortex. 1987

J P Jones, and L A Palmer
Department of Anatomy, University of Pennsylvania School of Medicine, Philadelphia 19104-6058.

1. A reverse correlation (6, 8, 25, 35) method is developed that allows quantitative determination of visual receptive-field structure in two spatial dimensions. This method is applied to simple cells in the cat striate cortex. 2. It is demonstrated that the reverse correlation method yields results with several desirable properties, including convergence and reproducibility independent of modest changes in stimulus parameters. 3. In contrast to results obtained with moving stimuli, we find that the bright and dark excitatory subregions in simple receptive fields do not overlap to any great extent. This difference in results may be attributed to confounding the independent variables space and time when using moving stimuli. 4. All simple receptive fields have subregions that vary smoothly in all directions in space. There are no sharp transitions either between excitatory subregions or between subregions and the area surrounding the receptive field. 5. Simple receptive fields vary both in the number of subregions observed, in the elongation of each subregion, and in the overall elongation of the field. In contrast with results obtained using moving stimuli, we find that subregions within a given receptive field need not be the same length. 6. The hypothesis that simple receptive fields can be modeled as either even symmetric or odd symmetric about a central axis is evaluated. This hypothesis is found to be false in general. Most simple receptive fields are neither even symmetric nor odd symmetric. 7. The hypothesis that simple receptive fields can be modeled as the product of a width response profile and an orthogonal length response profile (Cartesian separability) is evaluated. This hypothesis is found to be true for only approximately 50% of the cells in our sample.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003624 Darkness The absence of light. Darknesses
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

J P Jones, and L A Palmer
April 1988, Journal of the Optical Society of America. A, Optics and image science,
J P Jones, and L A Palmer
May 1973, The Journal of physiology,
J P Jones, and L A Palmer
January 1982, Biofizika,
J P Jones, and L A Palmer
November 1991, Journal of neurophysiology,
J P Jones, and L A Palmer
August 1981, Journal of neurophysiology,
J P Jones, and L A Palmer
October 1978, The Journal of physiology,
J P Jones, and L A Palmer
January 1983, Experimental brain research,
J P Jones, and L A Palmer
June 1978, Experimental brain research,
Copied contents to your clipboard!