Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. 2021

Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.

METHODS Resveratrol is abundant in grapes. A protective role for resveratrol in anti-oxidation and anti-inflammatory has been demonstrated. Rotenone is a pesticide, used to make animal models of Parkinson's disease (PD). The aim of our study was to investigate the protective effect of resveratrol on rotenone-induced microglial BV-2 cells and the mechanism. METHODS BV-2 cells were pretreated with resveratrol for 1 h and then exposed to rotenone. The level of microglia activation was detected. The Iron content and the production of glutathione, malondialdehyde (MDA), reactive oxygen species(ROS) were detected to reflect the status of oxidative stress. The mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) were measured by qRT-PCR.The expressions of p-STAT1, NF-E2-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1) and SLC7A11 were measured by western blot. RESULTS Our results showed that resveratrol attenuates microglia activation and M1 polarization in rotenone-induced BV-2 cells. Rotenone induced the production of free iron, ROS and MDA and inhibited the activity of glutathione, while the effects were reserved by resveratrol. Resveratrol also inhibited the induction effect of rotenone on IL-6, IL-1β, and TNF-α. In addition, resveratrol enhanced the protective effect of on rotenone-induced BV-2 cells via the inhibition of STAT1 and Keap1 and the upregulation of Nrf2 and SLC7A11. CONCLUSIONS Resveratrol attenuated rotenone-induced inflammation and oxidative stress in BV-2 cells through enhancing the inhibition of STAT1and Keap1 and the upregulation of Nrf2 and SLC7A11.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000072019 Kelch-Like ECH-Associated Protein 1 An adaptor protein characterized by an N-terminal BTB-POZ DOMAIN and six KELCH REPEATS that functions as a substrate for the E3 UBIQUITIN LIGASE complex. It negatively-regulates NF-E2-RELATED FACTOR 2 by targeting it for ubiquitination and degradation by the PROTEASOME. It also represses genes regulated by ANTIOXIDANT RESPONSE ELEMENTS. KEAP-1 Protein,KEAP1 Protein,KEAP 1 Protein,Kelch Like ECH Associated Protein 1
D000077185 Resveratrol A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. 3,4',5-Stilbenetriol,3,4',5-Trihydroxystilbene,3,5,4'-Trihydroxystilbene,Resveratrol, (Z)-,Resveratrol-3-sulfate,SRT 501,SRT-501,SRT501,cis-Resveratrol,trans-Resveratrol,trans-Resveratrol-3-O-sulfate,Resveratrol 3 sulfate,cis Resveratrol,trans Resveratrol,trans Resveratrol 3 O sulfate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias

Related Publications

Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
January 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
June 2021, Experimental and therapeutic medicine,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
September 2021, Neurochemistry international,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
August 2022, Molecular biology reports,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
January 2022, Stem cells international,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
October 2020, Inflammation,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
January 2015, International journal of clinical and experimental medicine,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
April 2018, Carbohydrate polymers,
Huihua Li, and Yujun Shen, and Hui Xiao, and Wei Sun
November 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!