A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. 2021

Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

Orthogonal (O) ribosome-mediated translation of O-mRNAs enables the incorporation of up to three distinct non-canonical amino acids (ncAAs) into proteins in Escherichia coli (E. coli). However, the general and efficient incorporation of multiple distinct ncAAs by O-ribosomes requires scalable strategies for both creating efficiently and specifically translated O-mRNAs, and the compact expression of multiple O-aminoacyl-tRNA synthetase (O-aaRS)/O-tRNA pairs. We automate the discovery of O-mRNAs that lead to up to 40 times more protein, and are up to 50-fold more orthogonal, than previous O-mRNAs; protein yields from our O-mRNAs match or exceed those from wild-type mRNAs. These advances enable a 33-fold increase in yield for incorporating three distinct ncAAs. We automate the creation of operons for O-tRNA genes, and develop operons for O-aaRS genes. Combining our advances creates a 68-codon, 24-amino-acid genetic code to efficiently incorporate four distinct ncAAs into a single protein in response to four distinct quadruplet codons.

UI MeSH Term Description Entries
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001331 Automation Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993) Automations
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
August 2019, Angewandte Chemie (International ed. in English),
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
January 2018, Frontiers in microbiology,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
August 2023, Nature communications,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
December 2016, Scientific reports,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
January 2017, ACS synthetic biology,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
June 2020, Nature chemistry,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
January 2009, Science (New York, N.Y.),
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
October 2023, PLoS genetics,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
June 2018, ACS synthetic biology,
Daniel L Dunkelmann, and Sebastian B Oehm, and Adam T Beattie, and Jason W Chin
February 1994, Journal of theoretical biology,
Copied contents to your clipboard!