Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli. 1978

H Staack, and J F Binstock, and H Schulz

A thiolase (acetyl CoA acyltransferase, EC 2.3-1.16) which acts on substrates of various chain lengths (thiolase I) has been purified from pig heart muscle 366-fold to near homogeneity as judged by gel electrophoresis. Its molecular weight was estimated to be 200,000 in the absence and 46,000 in the presence of sodium dodecyl sulfate. Kinetic measurements with acetoacetyl coenzyme A, 3-ketohexanoyl-CoA, 3-ketooctanoyl-CoA, and 3-ketodecanoyl-CoA yielded apparent Km values of 16, 8.3, 2.4, and 1.8 micron, respectively, whereas apparent Vmax values of 65 to 69 mumol/min/mg were obtained with all substrates except for acetoacetyl-CoA, with which a value of 26.5 mumol/min/mg was observed. Antibodies prepared against this thiolase were used to demonstrate that thiolase I and acetoacetyl-CoA thilase (thiolase II) from pig heart mitochondria are immunologically unrelated. The antibodies cross-reacted, however, with thiolase I from beef heart. Kinetic constants (Km, Vmax) were also determined for thiolases I and II from Escherichia coli, as were the native and subunit molecular weights of E. coli thiolase II. Although the E. coli thiolases were found to be immunologically distinct from the pig heart enzymes, their physical and kinetic properties are strikingly similar to those of the heart thiolases. In view of this finding and in view of the known physiological functions of the E. coli thiolases, it is proposed that thiolase I from pig heart is only involved in fatty acid metabolism, whereas thiolase II functions solely in ketone body degradation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000102 Acetyl-CoA C-Acyltransferase Enzyme that catalyzes the final step of fatty acid oxidation in which ACETYL COA is released and the CoA ester of a fatty acid two carbons shorter is formed. 3-Ketoacyl CoA Thiolase,3-Ketothiolase,Acetyl CoA Acyltransferase,Acetyl Coenzyme A Acyltransferase,beta-Ketothiolase,2-Methylacetoacetyl CoA Thiolase,3-Oxoacyl CoA Thiolase,3-Oxoacyl-Coenzyme A Thiolase,beta-Ketoacyl Thiolase,Acetyl CoA C Acyltransferase,Acyltransferase, Acetyl CoA,C-Acyltransferase, Acetyl-CoA,CoA Acyltransferase, Acetyl,CoA Thiolase, 2-Methylacetoacetyl,CoA Thiolase, 3-Ketoacyl,CoA Thiolase, 3-Oxoacyl,Thiolase, 2-Methylacetoacetyl CoA,Thiolase, 3-Ketoacyl CoA,Thiolase, 3-Oxoacyl CoA,Thiolase, 3-Oxoacyl-Coenzyme A,Thiolase, beta-Ketoacyl,beta Ketoacyl Thiolase,beta Ketothiolase
D000217 Acyltransferases Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3. Acyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

H Staack, and J F Binstock, and H Schulz
January 1981, Methods in enzymology,
H Staack, and J F Binstock, and H Schulz
May 1975, Journal of bacteriology,
H Staack, and J F Binstock, and H Schulz
October 1970, Biochimica et biophysica acta,
H Staack, and J F Binstock, and H Schulz
March 1972, European journal of biochemistry,
H Staack, and J F Binstock, and H Schulz
July 1973, Biochemistry,
H Staack, and J F Binstock, and H Schulz
December 1972, Biochemistry,
H Staack, and J F Binstock, and H Schulz
December 1975, European journal of biochemistry,
H Staack, and J F Binstock, and H Schulz
June 1976, Biochimica et biophysica acta,
Copied contents to your clipboard!