LncRNA PART1/miR-185-5p/RUNX3 feedback loop modulates osteogenic differentiation of bone marrow mesenchymal stem cells. 2021

Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
Department of Orthopedics and Traumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.

BACKGROUND Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for bone formation, and its dysfunction is reported to be associated with osteoporosis (OP). Recent researches have determined that lncRNA PART1 participates in the pathogenesis of multiple diseases. However, its role in modulating osteogenic differentiation of hBMSCs is unclear. METHODS PART1, miR-185-5p, and RUNX3 levels were assessed via RT-qPCR. The protein levels of OCN, OSN, and COL1A1 were measured by western blotting. The osteoblastic phenotype was evaluated via ALP activity and ARS staining. The relationship between miR-185-5p and PART1 or RUNX3 was validated by luciferase reporter, RIP assays. RESULTS PART1 and RUNX3 expression were enhanced during hBMSC osteogenic differentiation. PART1 deletion decreased OCN, OSN, and COL1A1 levels and weakened ALP activity, but promoted the apoptosis of hBMSCs. Moreover, PART1 served as a ceRNA to influence the RUNX3 level via targeting miR-185-5p. In addition, RUNX3 was verified to activate the transcription of PART1 in hBMSCs. Finally, rescue assays indicated that suppression of miR-185-5p or addition of RUNX3 partially abolished the effects of PART1 knockdown on the levels of OCN, OSX, and COL1A1 levels, ALP activity, and apoptosis. CONCLUSIONS Our study elaborated that PART1/miR-185-5p/RUNX3 feedback contributed to osteogenic differentiation and inhibited the hBMSCs apoptosis, suggesting that PART1 might be a novel target for OP treatment.

UI MeSH Term Description Entries
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D050677 Core Binding Factor Alpha 3 Subunit A transcription factor that dimerizes with the cofactor CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain. AML2 Protein,Acute Myeloid Leukemia 2 Protein,CBFA3 Protein,Core-Binding Factor Alpha 3 Protein,PEBP2A3 Protein,Runt Domain Transcription Factor AML-2,Runt-Related Transcription Factor 3 Protein,Runx3 Protein,Core Binding Factor Alpha 3 Protein,Runt Related Transcription Factor 3 Protein
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells
D062085 RNA, Long Noncoding A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long
D022661 RNA, Untranslated RNA which does not code for protein but has some enzymatic, structural or regulatory function. Although ribosomal RNA (RNA, RIBOSOMAL) and transfer RNA (RNA, TRANSFER) are also untranslated RNAs they are not included in this scope. Noncoding RNA,RNA, Non-Coding,RNA, Non-Peptide-Coding,RNA, Non-Protein-Coding,RNA, Noncoding,RNA, Nontranslated,npcRNA,Non-Coding RNA,Non-Peptide-Coding RNA,Non-Protein-Coding RNA,Nontranslated RNA,RNA, Non Coding,RNA, Non Peptide Coding,RNA, Non Protein Coding,Untranslated RNA

Related Publications

Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
October 2020, Journal of cellular physiology,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
January 2021, Journal of biological regulators and homeostatic agents,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
July 2020, Molecular medicine reports,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
March 2021, The journal of gene medicine,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
January 2022, PeerJ,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
January 2020, PeerJ,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
August 2021, International journal of stem cells,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
October 2021, The journal of gene medicine,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
September 2023, Heliyon,
Junjie Zhang, and Nanwei Xu, and Changlin Yu, and Kaisong Miao, and Qiugen Wang
March 2022, Bioengineered,
Copied contents to your clipboard!