RP cone-rod degeneration. 1987

J R Heckenlively
Jules Stein Eye Institute, UCLA School of Medicine.

A group of patients with progressive retinal degeneration and visual field loss, who meet the basic definition of RP were investigated to better define the relationship of the findings on the ERG with clinical characteristics such as visual field size, presence or absence of scotomata or pseudo-altitudinal defects on visual field, amount of night blindness; and presence or absence of macular or optic nerve changes. These studies suggest that cone-rod degeneration patients of the RP type go through the following stages; early, the ERG has a definite cone-rod pattern where the rod ERG is larger than the cone ERG while both are abnormal. As the disease advances, there is more of a reduction in the scotopic ERG such that both the rod and cone ERGs become nearly equal. As the disease further progresses the ERG becomes non-recordable on single-flash technique, but there is good residual rod function and the final rod threshold remains good until the visual field is reduced, typically less than 10 degrees with the IV-4 isopter. Finally with advanced disease the patient becomes night blind and generally becomes very difficult to distinguished from patients who have advanced rod-cone degeneration. While it may seem logical to find that visual field size correlates with various ERG parameters; this has not been as consistent a finding in patients with rod-cone degeneration in the author's experience. The analysis shows several new pieces of information about visual field changes in cone-rod degeneration; enlarged blind spots are seen earlier in cases which have recordable cone-rod patterns (group I), and pseudo-altitudinal changes are more likely to occur in autosomal recessive patients. Patients with macular lesions and central scotomata had larger amplitudes than patients with normal appearing maculae and no central scotomata. Patients with temporal optic atrophy had an earlier onset of symptoms and significant correlation with both photopic a- and b-waves and bright flash dark-adapted b-wave implicit times. Macular edema was present in patients with smaller amplitudes and longer implicit times which suggest that these patients have greater panretinal dysfunction which correlates with the macular alterations. Pigment changes within the classes of none, mild, and moderate deposition correlated with ERG parameters; there was more pigment in cases where ERG parameters were worse. However, cases with heavy pigmentation did not correlate with the ERG degree of severity, suggesting that independent factors influence the amount of pigmentation that occurs in these cases.

UI MeSH Term Description Entries
D008266 Macula Lutea An oval area in the retina, 3 to 5 mm in diameter, usually located temporal to the posterior pole of the eye and slightly below the level of the optic disk. It is characterized by the presence of a yellow pigment diffusely permeating the inner layers, contains the fovea centralis in its center, and provides the best phototropic visual acuity. It is devoid of retinal blood vessels, except in its periphery, and receives nourishment from the choriocapillaris of the choroid. (From Cline et al., Dictionary of Visual Science, 4th ed) Lutea, Macula,Luteas, Macula,Macula Luteas
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D004596 Electroretinography Recording of electric potentials in the retina after stimulation by light. Electroretinographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D012174 Retinitis Pigmentosa Hereditary, progressive degeneration of the retina due to death of ROD PHOTORECEPTORS initially and subsequent death of CONE PHOTORECEPTORS. It is characterized by deposition of pigment in the retina. Pigmentary Retinopathy,Tapetoretinal Degeneration,Pigmentary Retinopathies,Retinopathies, Pigmentary,Retinopathy, Pigmentary,Tapetoretinal Degenerations

Related Publications

J R Heckenlively
July 1968, Archives of ophthalmology (Chicago, Ill. : 1960),
J R Heckenlively
January 1987, Investigative ophthalmology & visual science,
J R Heckenlively
November 1990, Investigative ophthalmology & visual science,
J R Heckenlively
October 2022, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
J R Heckenlively
November 1982, Investigative ophthalmology & visual science,
J R Heckenlively
January 2011, Investigative ophthalmology & visual science,
J R Heckenlively
January 2018, Advances in experimental medicine and biology,
J R Heckenlively
December 2005, Investigative ophthalmology & visual science,
J R Heckenlively
January 1987, Progress in clinical and biological research,
Copied contents to your clipboard!