TRIB3 regulates FSHR expression in human granulosa cells under high levels of free fatty acids. 2021

Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China.

BACKGROUND Granulosa cells (GCs) in cumulus oophorus highly express follicle stimulating hormone receptor (FSHR), which is the most important mediator of both estradiol synthesis and oocyte maturation. Obese women have elevated free fatty acids (FFAs) levels in their follicular fluids and decreased FSHR expression in GCs, which is related to an altered protein kinase B/glycogen synthase kinase 3β (Akt/GSK3β) signaling pathway. Such FFA increases accompany 3-fold rises in pseudokinase 3 (TRIB3) expression and reduce the Akt phosphorylation status in both the human liver and in insulinoma cell lines. Therefore, in a high FFA environment, we determined if TRIB3 mediates regulation of FSHR via the Akt/GSK3β signaling pathway in human GCs. METHODS GCs from women undergoing in vitro fertilization were collected and designated as high and low FFAs cohorts based on their follicular fluid FFA content. GCs with low FFA levels and a human granulosa-like tumor (KGN) cell line were exposed to palmitic acid (PA), which is a dominate FFA follicular fluid constituent. The effects were assessed of this substitution on the Akt/GSK3β signaling pathway activity as well as the expressions of TRIB3 and FSHR at both the gene and protein levels by qPCR, Western blot and immunofluorescence staining analyses. Meanwhile, the individual effects of TRIB3 knockdown in KGN cells and p-AKT inhibitors were compared to determine the mechanisms of FFA-induced FSHR downregulation. RESULTS The average FSH dose consuming per oocyte (FSH dose/oocyte) was elevated and Top embryo quality ratio was decreased in women with high levels of FFAs in their follicular fluid. In these women, the GC TRIB3 and ATF4 protein expression levels were upregulated which was accompanied by FSHR downregulation. Such upregulation was confirmed based on corresponding increases in their gene expression levels. On the other hand, the levels of p-Akt decreased while p-GSK3β increased in the GCs. Moreover, TRIB3 knockdown reversed declines in FSHR expression and estradiol (E2) production in KGN cells treated with PA, which also resulted in increased p-Akt levels and declines in the p-GSK3β level. In contrast, treatment of TRIB3-knockdown cells with an inhibitor of p-Akt (Ser473) resulted in rises in the levels of both p-GSK3β as well as FSHR expression whereas E2 synthesis fell. CONCLUSIONS During exposure to a high FFA content, TRIB3 can reduce FSHR expression through stimulation of the Akt/GSK3β pathway in human GCs. This response may contribute to inducing oocyte maturation.

UI MeSH Term Description Entries
D007247 Infertility, Female Diminished or absent ability of a female to achieve conception. Sterility, Female,Sterility, Postpartum,Sub-Fertility, Female,Subfertility, Female,Female Infertility,Female Sterility,Female Sub-Fertility,Female Subfertility,Postpartum Sterility,Sub Fertility, Female
D011962 Receptors, FSH Cell surface proteins that bind FOLLICLE STIMULATING HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. FSH Receptors,Follicle-Stimulating Hormone Receptors,Receptors, Follicle-Stimulating Hormone,FSH Receptor,Follicle-Stimulating Hormone Receptor,Follicle Stimulating Hormone Receptor,Follicle Stimulating Hormone Receptors,Hormone Receptor, Follicle-Stimulating,Hormone Receptors, Follicle-Stimulating,Receptor, FSH,Receptor, Follicle-Stimulating Hormone,Receptors, Follicle Stimulating Hormone
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005260 Female Females
D005307 Fertilization in Vitro An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro. Test-Tube Fertilization,Fertilizations in Vitro,In Vitro Fertilization,Test-Tube Babies,Babies, Test-Tube,Baby, Test-Tube,Fertilization, Test-Tube,Fertilizations, Test-Tube,In Vitro Fertilizations,Test Tube Babies,Test Tube Fertilization,Test-Tube Baby,Test-Tube Fertilizations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell

Related Publications

Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
December 2021, Journal of ovarian research,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
June 2019, Journal of assisted reproduction and genetics,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
June 2018, Reproduction (Cambridge, England),
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
November 1973, Experientia,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
December 2014, Fertility and sterility,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
March 2021, International journal of molecular sciences,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
October 2002, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
August 2013, Reproduction (Cambridge, England),
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
June 1986, The American journal of physiology,
Nan Wang, and Chenchen Si, and Lan Xia, and Xian Wu, and Sheng Zhao, and Huihui Xu, and Zhide Ding, and Zhihong Niu
September 1967, The American journal of clinical nutrition,
Copied contents to your clipboard!