An explanation of axonal regeneration in peripheral nerves and its failure in the central nervous system. 1978

J A Kiernan

Nerve fibres severed within peripheral nerves are able to regenerate and reinnervate the structures they formerly supplied. Most axons severed within the mammalian central nervous system (CNS) do not regenerate in this way. Regenerative axonal growth begins to occur in the CNS but ceases about two weeks after injury. Five earlier theories purporting to explain this difference are reviewed and found not to account satisfactorily for many experimental observations. A new hypothesis is advanced in which it is held that in order for regeneration to take place, the growing tips of the axons must be surrounded by extracellular fluid containing proteins (of specified identity) derived from the blood plasma. Such proteins are thought to be imbibed by the tips of the fibres and transported retrogradely to the neuronal cell-bodies. With this hypothesis it is possible to explain the success of axonal regeneration in peripheral nerves and its failure in the CNS. It is also possible to account for the exceptional circumstances in which axons do regenerate in the CNS. Various experiments are suggested for testing the validity of the new hypothesis.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000663 Amphibians VERTEBRATES belonging to the class amphibia such as frogs, toads, newts and salamanders that live in a semiaquatic environment. Amphibia,Amphibian
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

J A Kiernan
February 1995, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
J A Kiernan
June 2015, The Journal of biological chemistry,
Copied contents to your clipboard!