Packaging of ColE1 DNA having a lambda phage cohesive end site. 1978

K Umene, and K Shimada, and Y Takagi

The mechanism of lambda phage-mediated transduction of hybrid colicin E1 DNAs of various lengths was studied, and factors influencing the formation of these transducing particles were investigated. The results were as follows: 1. The presence of a cohesive end site of lambda phage (coslambda) on colicin E1 DNA was essential for packaging of the DNA. 2. Packaging of colicin E1 DNAs, which carry coslambda with molecular sizes corresponding to 68% of that of lambda phage DNA, was observed in the absence of all known recombination functions of E. coli K-12 and of lambda phage. 3. Hybrid colicin E1 DNAs having coslambda with molecular sizes corresponding to 28% of that of lambda phage DNA were packaged within lambda phage particles as trimers; hybrid DNAs with coslambda of 40 and 47% of the length of lambda phage DNA were packaged as dimers; and those with molecular sizes of 68% of that of lambda phage DNA were packaged mostly as monomers. These results demonstrated that two factors are essential for the packaging of DNAs within lambda phage particles; the presence of coslambda on the DNA molecule and an appropriate size of DNA.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003086 Bacteriocin Plasmids Plasmids encoding bacterial exotoxins (BACTERIOCINS). Bacteriocin Factors,Col Factors,Colicin Factors,Colicin Plasmids,Bacteriocin Factor,Bacteriocin Plasmid,Col Factor,Colicin Factor,Colicin Plasmid,Factor, Bacteriocin,Factor, Col,Factor, Colicin,Factors, Bacteriocin,Factors, Col,Factors, Colicin,Plasmid, Bacteriocin,Plasmid, Colicin,Plasmids, Bacteriocin,Plasmids, Colicin
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

K Umene, and K Shimada, and Y Takagi
June 1982, Proceedings of the National Academy of Sciences of the United States of America,
K Umene, and K Shimada, and Y Takagi
January 1973, Science (New York, N.Y.),
K Umene, and K Shimada, and Y Takagi
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
K Umene, and K Shimada, and Y Takagi
December 1977, Journal of molecular biology,
K Umene, and K Shimada, and Y Takagi
January 1974, Journal of supramolecular structure,
K Umene, and K Shimada, and Y Takagi
October 1982, Proceedings of the National Academy of Sciences of the United States of America,
K Umene, and K Shimada, and Y Takagi
April 1980, Gene,
K Umene, and K Shimada, and Y Takagi
March 1974, Journal of molecular biology,
K Umene, and K Shimada, and Y Takagi
October 1983, Gene,
K Umene, and K Shimada, and Y Takagi
October 1999, Biochemistry,
Copied contents to your clipboard!