W-reactivation and W-mutagenesis of gamma-irradiated phage lambda. 1978

S E Bresler, and V L Kalinin, and V N Shelegedin

UV irradiation of Escherichia coli wild-type cells manifested the phenomena of W-reactivation (WR) and W-mutagenesis (WM) of phage lambda irradiated by 60Co gamma-rays in broth. WR of gamma-irradiated phage was half as efficient as that of UV-irradiated phage, although the frequency of c mutations in conditions of WR was about the same in both phages. The xthA and recBrecC sbcB mutants were practically identical with wild-type cells in respect of WR and WM of UV- and gamma-irradiated phage. As in UV-irradiated phage, WR and WM of gamma-irradiated phage were absolutely dependent on the recA+ and lexA+ genes of the host cell. WR and WM required much smaller doses of UV radiation for induction in polA1 and uvrB mutants. The lig-ts mutant, temperature sensitive in polynucleotide ligase, was deficient in WR and WM of UV- and gamma-irradiated phage at the semi-permissive temperature of 37 degrees. The uvrE502 mutant and the allelic recL152 strain were absolutely deficient in WR and WM of gamma-irradiated phage. In UV-irradiated phage WR was reduced, but not eliminated, in the uvrE mutant, and WM was entirely suppressed. This is another example of uncoupling of WR and WM which shows that several repair systems are active in WR but only some of them are mutagenic.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011118 Polynucleotide Ligases Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1. Polynucleotide Synthetases,Ligases, Polynucleotide,Synthetases, Polynucleotide
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases

Related Publications

S E Bresler, and V L Kalinin, and V N Shelegedin
January 1977, Genetika,
S E Bresler, and V L Kalinin, and V N Shelegedin
January 1980, Radiation and environmental biophysics,
S E Bresler, and V L Kalinin, and V N Shelegedin
January 1983, Advances in space research : the official journal of the Committee on Space Research (COSPAR),
S E Bresler, and V L Kalinin, and V N Shelegedin
January 1982, Biochimie,
S E Bresler, and V L Kalinin, and V N Shelegedin
July 1985, Genetika,
S E Bresler, and V L Kalinin, and V N Shelegedin
February 1990, Mutation research,
S E Bresler, and V L Kalinin, and V N Shelegedin
March 1973, Mutation research,
S E Bresler, and V L Kalinin, and V N Shelegedin
August 1970, Archives internationales de physiologie et de biochimie,
S E Bresler, and V L Kalinin, and V N Shelegedin
January 1988, Mutagenesis,
Copied contents to your clipboard!