Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces. 2021

Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, U.K.

Superhydrophobic coatings and slippery liquid-infused porous surfaces (SLIPS) have shown their potentials in self-cleaning, anti-icing, anti-erosion, and antibiofouling applications. Various studies have been done on controlling the droplet impact on such surfaces using passive methods such as modifying the lubricant layer thickness in SLIPS. Despite their effectiveness, passive methods lack on-demand control over the impact dynamics of droplets. This paper introduces a new method to actively control the droplet impact onto superhydrophobic and SLIPS surfaces using surface acoustic waves (SAWs). In this study, we designed and fabricated SLIPS on ZnO/aluminum thin-film SAW devices and investigated different scenarios of droplet impact on the surfaces compared to those on similar superhydrophobic-coated surfaces. Our results showed that SAWs have insignificant influences on the impact dynamics of a porous and superhydrophobic surface without an infused oil layer. However, after infusion with oil, SAW energy could be effectively transferred to the droplet, thus modifying its impact dynamics onto the superhydrophobic surface. Results showed that by applying SAWs, the spreading and retraction behaviors of the droplets are altered on the SLIPS surface, leading to a change in a droplet impact regime from deposition to complete rebound with altered rebounding angles. Moreover, the contact time was reduced up to 30% when applying SAWs on surfaces with an optimum oil lubricant thickness of ∼8 μm. Our work offers an effective way of applying SAW technology along with SLIPS to effectively reduce the contact time and alter the droplet rebound angles.

UI MeSH Term Description Entries

Related Publications

Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
November 2020, Nanoscale,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
May 2023, Reports on progress in physics. Physical Society (Great Britain),
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
October 2013, ACS applied materials & interfaces,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
February 2018, Soft matter,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
September 2020, Langmuir : the ACS journal of surfaces and colloids,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
January 2023, Nano research,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
July 2020, ACS applied materials & interfaces,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
January 2013, Physical chemistry chemical physics : PCCP,
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
February 2023, Chemical communications (Cambridge, England),
Mehdi H Biroun, and Luke Haworth, and Prashant Agrawal, and Bethany Orme, and Glen McHale, and Hamdi Torun, and Mohammad Rahmati, and YongQing Fu
November 2015, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!