Ursolic acid reverses liver fibrosis by inhibiting NOX4/NLRP3 inflammasome pathways and bacterial dysbiosis. 2021

Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.

Activation of the NOX4/NLRP3 inflammasome pathway has been associated with fibrosis in other organs. An imbalance in intestinal bacteria is an important driving factor of liver fibrosis through the liver-gut axis. This study aimed to explore whether the effect of ursolic acid (UA) on liver fibrosis was associated with the NOX4/NLRP3 inflammasome pathways and intestinal bacteria. Wild-type (WT), NLRP3, and NOX4 mice and AP-treated mice were injected with CCI4 and treated with or without UA. The intestinal contents of the mice were collected and analyzed by 16S rRNA sequencing. UA alleviated liver fibrosis, which manifested as decreases in collagen deposition, liver injury, and the expression of fibrosis-related factors, and the expression of NOX4 and NLRP3 was significantly inhibited by UA treatment. Even after CCI4 injection, liver damage and fibrosis-related factors were significantly decreased in NLRP3, and AP-treated mice. Importantly, the expression of NLRP3 was obviously inhibited in NOX4 and AP-treated mice. In addition, the diversity of intestinal bacteria and the abundance of probiotics in NLRP3 and NOX4 mice was significantly higher than those in WT mice, while the abundance of harmful bacteria in NLRP3 and NOX4 mice was significantly lower than that in WT mice. The NOX4/NLRP3 inflammasome pathway plays a crucial role in liver fibrosis and is closely associated with the beneficial effect of UA. The mechanism by which the NOX4/NLRP3 inflammasome pathway is involved in liver fibrosis may be associated with disordered intestinal bacteria.

UI MeSH Term Description Entries
D008103 Liver Cirrhosis Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules. Cirrhosis, Liver,Fibrosis, Liver,Hepatic Cirrhosis,Liver Fibrosis,Cirrhosis, Hepatic
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000071199 NLR Family, Pyrin Domain-Containing 3 Protein An NLR protein that contains an N-terminal PYRIN DOMAIN and ATP-binding site and 9 C-terminal LEUCINE-rich repeats; it is expressed primarily by MACROPHAGES. It is a core component of the INFLAMMASOME and directs its assembly in response to pathogen infection and damage-associated stimuli. Mutations in the NLRP3 gene are associated with FAMILIAL COLD AUTOINFLAMMATORY SYNDROME. Cold Autoinflammatory Syndrome 1 Protein,NACHT, LRR and PYD Domains-Containing Protein 3,NLRP3 Protein,NACHT, LRR and PYD Domains Containing Protein 3,NLR Family, Pyrin Domain Containing 3 Protein
D000074663 NADPH Oxidase 4 An NADPH oxidase that is strongly expressed in the kidney. It forms a complex with CYBA-P22PHOX and produces intracellular SUPEROXIDES that may regulate cellular signaling in APOPTOSIS; BONE RESORPTION; and NF-KAPPA B activation. Nox4 Protein,Renal NAD(P)H Oxidase,Renox NAD(P)H Oxidase,Oxidase 4, NADPH
D000097245 Ursolic Acid A pentacyclic triterpene that co-occurs with its isomer OLEANOLIC ACID in several plant species, and occurs in large amounts in FRUITS (such as CRANBERRIES; PEARS; PLUMS; and OLIVES), MEDICINAL HERBS, and other plants. (+)-Ursolic Acid,(3 beta)-3-Hydroxyurs-12-en-28-oic Acid,3-Epi-Ursolic Acid,3-Epiursolic Acid,3alpha-Ursolic Acid,3beta-Ursolic Acid,Olean-12-en-28-oic Acid, 3-Hydroxy-, Sodium Salt (1:1), (3beta)-,Sodium Oleanolate,Ursolic Acid Monosodium Salt,Ursolic Acid Sodium Salt,Ursolic Acid, (3beta)-Isomer, 2-(14)C-Labeled,Ursolic Acid, (3beta)-Isomer, Monopotassium Salt,Merotaine,3 Epi Ursolic Acid,3 Epiursolic Acid,3alpha Ursolic Acid,3beta Ursolic Acid,Oleanolate, Sodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D014315 Triterpenes A class of terpenes (the general formula C30H48) formed by the condensation of six isoprene units, equivalent to three terpene units. Triterpene,Triterpenoid,Triterpenoids

Related Publications

Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
June 2020, Aging,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
November 2021, Molecular medicine reports,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
January 2019, Frontiers in pharmacology,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
December 2022, International immunopharmacology,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
February 2020, International immunopharmacology,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
December 2016, Oncotarget,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
January 2024, Journal of ethnopharmacology,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
September 2016, Nature medicine,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
April 2024, Experimental and therapeutic medicine,
Yuan Nie, and Qi Liu, and Wang Zhang, and Yipeng Wan, and Chenkai Huang, and Xuan Zhu
October 2019, Phytotherapy research : PTR,
Copied contents to your clipboard!