Characterization of porcine peripheral blood leukocytes by light-scattering flow cytometry. 1987

F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign 61801.

As a basis for other experiments using flow cytometry of porcine peripheral blood leukocytes, cell fractions were isolated by various methods and analyzed by forward angle light scatter and 90 degree light scatter. Cytospin smears of cell samples were also studied by leukocyte differential counts and nonspecific esterase staining. Three main populations of peripheral blood leukocytes [lymphocytes, monocytes, and granulocytes (primarily neutrophils)], were defined in the log 90 degree light scatter by forward angle light scatter histogram. Partial overlap was observed between lymphocyte and monocyte, and between monocyte and granulocyte domains. Correlation between leukocyte differential counts and flow cytometric quantification based on bitmap statistics of appropriate domains was between r = 0.872-0.892 for lymphocyte and granulocyte. Percoll density gradients were used for subfractionation of leukocyte populations, especially for the enrichment of granulocytes. The specific densities were calculated for lymphocytes (1.0585-1.0819 g/cc), monocytes (1.0585-1.0702 g/cc), granulocyte (1.0819-1.0936 g/cc), and erythrocytes (greater than 1.0952 g/cc). We suggest that light scatter characterization is a basis for future studies of porcine blood by flow cytometry.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
May 2012, Journal of biomedical optics,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
April 1999, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
June 2022, Veterinary immunology and immunopathology,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
December 2000, Journal of immunological methods,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
July 1998, Cytometry,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
September 2023, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
March 1988, Journal of leukocyte biology,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
October 2023, Analytical methods : advancing methods and applications,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
July 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
F I Wang, and T J Williams, and F Y el-Awar, and V F Pang, and E C Hahn
July 1983, Cytometry,
Copied contents to your clipboard!